File size: 15,675 Bytes
596d986
 
 
 
 
 
 
 
963eec5
596d986
 
 
 
 
 
 
 
 
 
 
 
1640931
596d986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b50280a
 
 
 
 
 
 
 
 
 
596d986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b50280a
596d986
 
b50280a
596d986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3fe912
963eec5
596d986
 
 
caa75e9
 
 
 
 
 
596d986
 
 
 
 
 
 
 
 
 
b50280a
 
 
 
596d986
b50280a
596d986
 
 
 
 
 
 
 
 
 
 
 
b50280a
 
596d986
 
 
 
 
 
 
b50280a
596d986
 
b50280a
 
 
 
596d986
 
ee0f602
 
 
b50280a
596d986
 
 
caa75e9
596d986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b50280a
 
 
963eec5
 
 
 
 
b50280a
 
 
 
 
963eec5
596d986
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import torch
import torch.nn as nn
import os
from peft import PeftModel
from PIL import Image
import gradio as gr
import librosa
import nltk
import re

from transformers import PreTrainedModel
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import CLIPProcessor, CLIPModel
from transformers import WhisperProcessor, WhisperForConditionalGeneration

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model_name = "microsoft/Phi-3.5-mini-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

# Load the model and processor
clipmodel = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
clipprocessor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

nltk.download('punkt')
nltk.download('punkt_tab')

def remove_punctuation(text):
    newtext = ''.join([char for char in text if char.isalnum() or char.isspace()])
    newtext = ' '.join(newtext.split())
    return newtext

def preprocess_text(text):
    text_no_punct = remove_punctuation(text)
    return text_no_punct

# Load Whisper model and processor
whisper_model_name = "openai/whisper-small"
whisper_processor = WhisperProcessor.from_pretrained(whisper_model_name)
whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_name)

def transcribe_speech(audiopath):
    # Load and preprocess the audio
    speech, rate = librosa.load(audiopath, sr=16000)
    audio_input = whisper_processor(speech, return_tensors="pt", sampling_rate=16000)
    # print("audio_input:", audio_input)
    
    # Generate transcription
    with torch.no_grad():
        generated_ids = whisper_model.generate(audio_input["input_features"])
    
    # Decode the transcription
    transcription = whisper_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
    
    return transcription

class ProjectionBlock(nn.Module):
    def __init__(self, input_dim_CLIP, input_dim_phi2):
        super().__init__()
        self.pre_norm = nn.LayerNorm(input_dim_CLIP)
        self.proj = nn.Sequential(
            nn.Linear(input_dim_CLIP, input_dim_phi2),
            nn.GELU(),
            nn.Linear(input_dim_phi2, input_dim_phi2)
        )
    def forward(self, x):
        x = self.pre_norm(x)
        return self.proj(x)

# Modify the MultimodalPhiModel class to work with HuggingFace Trainer
class MultimodalPhiModel(PreTrainedModel):

    def gradient_checkpointing_enable(self, **kwargs):
        self.phi_model.gradient_checkpointing_enable(**kwargs)

    def gradient_checkpointing_disable(self):
        self.phi_model.gradient_checkpointing_disable()

    def __init__(self, phi_model, tokenizer, projection):
        super().__init__(phi_model.config)
        self.phi_model = phi_model
        self.image_projection = projection
        self.tokenizer = tokenizer
        # self.device = device
        self.base_phi_model = None

    @classmethod
    def from_pretrained(self, pretrained_model_name_or_path, *model_args, debug=False, **kwargs):

        model_name = "microsoft/Phi-3.5-mini-instruct"
        base_phi_model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype=torch.bfloat16,
            trust_remote_code=True,
        )
        tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

        # phi_path = os.path.join(pretrained_model_name_or_path, "phi_model")
        phi_path = pretrained_model_name_or_path

        # Save the base model
        model = PeftModel.from_pretrained(base_phi_model, phi_path)
        phi_model = model.merge_and_unload()

        # # Load the base Phi-3 model
        # phi_model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        input_dim = 512
        output_dim = 3072

        # Load the projector weights
        # projector_path = os.path.join(pretrained_model_name_or_path, "projection_layer", "pytorch_model.bin")
        projector_path = os.path.join(pretrained_model_name_or_path, "image_projector.pth")
        if os.path.exists(projector_path):
            projector_state_dict = torch.load(projector_path, map_location=phi_model.device)

            projector = ProjectionBlock(input_dim, output_dim)

            # Try to load the state dict, ignoring mismatched keys
            projector.load_state_dict(projector_state_dict, strict=False)
            print(f"Loaded projector with input_dim={input_dim}, output_dim={output_dim}")
        else:
            print(f"Projector weights not found at {projector_path}. Initializing with default dimensions.")
            input_dim = 512  # Default CLIP embedding size
            output_dim = phi_model.config.hidden_size
            projector = ProjectionBlock(input_dim, output_dim)

        # Create and return the Phi3WithProjector instance
        model = self(phi_model, tokenizer, projector)
        model.base_phi_model = base_phi_model
        return model

    def save_pretrained(self, save_directory):
        # Load the Phi-3.5 model
        self.phi_model.save_pretrained(save_directory)
        # model_name = "microsoft/Phi-3.5-mini-instruct"
        # base_phi_model = AutoModelForCausalLM.from_pretrained(
        #     model_name,
        #     torch_dtype=torch.bfloat16,
        #     trust_remote_code=True,
        # )
        # # Save the base model
        # model = PeftModel.from_pretrained(base_phi_model, self.phi_model)
        # model = model.merge_and_unload()
        # model.save_pretrained(save_directory)

        # Save the projector weights
        projector_path = os.path.join(save_directory, "image_projector.pth")
        torch.save(self.image_projection.state_dict(), projector_path)

        # Save the config
        self.config.save_pretrained(save_directory)

    def encode(self, image_features):
        image_projections = self.image_projection(image_features)
        return image_projections

    def forward(self, start_input_ids, end_input_ids, image_features, attention_mask, labels):
        # print("tokenizer bos_token_id", self.tokenizer.bos_token_id, "tokenizer eos_token", self.tokenizer.eos_token,
        #       "tokenizer pad_token_id", self.tokenizer.pad_token_id, "tokenizer sep_token_id", self.tokenizer.sep_token_id,
        #       "tokenizer cls_token_id", self.tokenizer.cls_token_id, "tokenizer mask_token_id", self.tokenizer.mask_token_id,
        #       "tokenizer unk_token_id", self.tokenizer.unk_token_id)
        device = next(self.parameters()).device

        start_embeds = self.phi_model.get_input_embeddings()(start_input_ids.to(device))
        end_embeds = self.phi_model.get_input_embeddings()(end_input_ids.to(device))
        # print("start_embeds shape:", start_embeds.shape, "image_embeddings shape:", image_embeddings.shape, "end_embeds shape:", end_embeds.shape)
        # print("start_embeds dtype:", start_embeds.dtype, "image_embeddings dtype:", image_embeddings.dtype, "end_embeds dtype:", end_embeds.dtype)
        if image_features is not None:
            # Encode image features
            image_embeddings = self.encode(image_features.to(device)).bfloat16()
            input_embeds = torch.cat([start_embeds, image_embeddings, end_embeds], dim=1)
        else:
            input_embeds = torch.cat([start_embeds, end_embeds], dim=1)
        # print("Input Embeds shape:", input_embeds.shape, "attention_mask shape:", attention_mask.shape, "labels shape:", labels.shape)

        # print("input_embeds dtype:", input_embeds.dtype, "attention_mask dtype:", attention_mask.dtype)
        # Forward pass through the language model
        outputs = self.phi_model(inputs_embeds=input_embeds.to(device), 
                                 attention_mask=attention_mask.to(device), 
                                 labels=labels, 
                                 return_dict=True)
        
        return outputs

def getImageArray(image_path):
    image = Image.open(image_path)
    return image

def getAudioArray(audio_path):
    speech, rate = librosa.load(audio_path, sr=16000)
    return speech

# Start text before putting image embedding
start_text = "<|system|> \n You are an assistant good at understanding the context.<|end|> \n <|user|> \n"
# Prepare text input for causal language modeling
end_text = "\n Describe the objects and their relationship in the given context.<|end|> \n <|assistant|> \n"

words = nltk.word_tokenize(start_text) + nltk.word_tokenize(end_text)
input_words = list(set(words))
# print("Input words:",input_words)


def getInputs(image_path, question, answer=""):

    image_features = None
    num_image_tokens = 0

    if image_path is not None:
        # print("type of image:", type(image_path))
        # print("image path:", image_path)	
        image = clipprocessor(images=Image.open(image_path), return_tensors="pt")

        # Generate the embedding
        image_features = clipmodel.get_image_features(**image)

        # Generate the embedding
        # image_features = get_clip_embeddings(image)
        image_features = torch.stack([image_features])
        num_image_tokens = image_features.shape[1]

    # Start text before putting image embedding
    start_text = f"<|system|>\nYou are an assistant good at understanding the context.<|end|>\n<|user|>\n "

    # Prepare text input for causal language modeling
    end_text = f" .\n  Describe the objects and their relationship from the context. <|end|>\n<|assistant|>\n {answer}"

    # Tokenize the full texts
    start_tokens = tokenizer(start_text, padding=True, truncation=True, max_length=512, return_tensors="pt")
    end_tokens = tokenizer(end_text, padding=True, truncation=True, max_length=512, return_tensors="pt")
    # print(f"start_encodings shape: {start_encodings['input_ids'].shape}, end_encodings shape: {end_encodings['input_ids'].shape}")
    
    start_input_ids = start_tokens['input_ids']
    start_attention_mask = start_tokens['attention_mask']
    end_input_ids = end_tokens['input_ids']
    end_attention_mask = end_tokens['attention_mask']

    # print("start_input_ids type:", type(start_input_ids), "image_tokens type:", type(image_tokens))
    # print(f"start_input_ids shape: {start_input_ids.shape}, image_tokens shape: {image_tokens.shape}, end_input_ids shape: {end_input_ids.shape}")
    # input_ids = torch.cat([start_input_ids,image_tokens,end_input_ids], dim=1)
    if image_path is not None:
        attention_mask = torch.cat([start_attention_mask, torch.ones((1, num_image_tokens), dtype=torch.long), end_attention_mask], dim=1)
    else:
        attention_mask = torch.cat([start_attention_mask, end_attention_mask], dim=1)

    return start_input_ids, end_input_ids, image_features, attention_mask

model_location = "./MM_FT_C1_V2"
# print("Model location:", model_location)

model = MultimodalPhiModel.from_pretrained(model_location).to(device)

model_name = "microsoft/Phi-3.5-mini-instruct"
base_phi_model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
).to(device)

def getStringAfter(output, start_str):
    if start_str in output:
        answer = output.split(start_str)[1]
    else:
        answer = output

    answer = preprocess_text(answer)
    return answer

def getAnswerPart(output):
    output_words = nltk.word_tokenize(output)
    filtered_words = [word for word in output_words if word.lower() not in [w.lower() for w in input_words]]
    return ' '.join(filtered_words)

def generateOutput(image_path, audio_path, context_text, question, max_length=3):
    answerPart = ""
    speech_text = ""
    if image_path is not None:
        for i in range(max_length):
            start_tokens, end_tokens, image_features, attention_mask = getInputs(image_path, question, answer=answerPart)
            # print("image_features dtype:", image_features.dtype)
            output = model(start_tokens, end_tokens, image_features, attention_mask, labels=None)
            tokens = output.logits.argmax(dim=-1)
            output = tokenizer.decode(
                tokens[0],
                skip_special_tokens=True
                )
            # answerPart = getStringAfter(output, "<|assistant|>")
            answerPart = getAnswerPart(output)
        print("Answerpart:", answerPart)

    if audio_path is not None:
        speech_text = transcribe_speech(audio_path)
        print("Speech Text:", speech_text)

    if (question is None) or (question == ""):
        question = " Describe the objects and their relationships in 1 sentence."

    input_text = (
        "<|system|>\n Please understand the context "
        "and answer the question in 1 or 2 summarized sentences.\n"
        f"<|end|>\n<|user|>\n<|context|> {answerPart} \n {speech_text} \n {context_text} "
        f"\n<|question|>: {question} \n<|end|>\n<|assistant|>\n"
    )
    print("input_text:", input_text)
    tokens = tokenizer(input_text, padding=True, truncation=True, max_length=1024, return_tensors="pt")
    start_tokens = tokens['input_ids'].to(device)
    # start_tokens = tokenizer(input_text, padding=True, truncation=True, max_length=1024, return_tensors="pt")['input_ids'].to(device)
    attention_mask = tokens['attention_mask'].to(device)
    # base_phi_model.generate(start_tokens, max_length=2, do_sample=False, pad_token_id=tokenizer.pad_token_id)

    output_text = tokenizer.decode(
        base_phi_model.generate(start_tokens, attention_mask=attention_mask, max_length=1024, do_sample=False, pad_token_id=tokenizer.pad_token_id)[0],
        skip_special_tokens=True
    )

    output_text = getStringAfter(output_text, question).strip()
    return output_text

title = "Created Fine Tuned MultiModal model"
description = "Test the fine tuned multimodal model created using clip, phi3.5 mini instruct, whisper models"

demo = gr.Blocks()

def process_inputs(image, audio_source, audio_file, audio_mic, context_text, question):
    if audio_source == "Microphone":
        speech = audio_mic
    elif audio_source == "Audio File":
        speech = audio_file
    else:
        speech = None

    # image_features = get_clip_embeddings(image) if image else None
    answer = generateOutput(image, speech, context_text, question)
    
    return answer

with demo:
    gr.Markdown(f"# {title}")
    gr.Markdown(f" {description}")

    with gr.Row():
        with gr.Column(scale=1, min_width=300):
            image_input = gr.Image(type="filepath", label="Upload Image")
        with gr.Column(scale=2, min_width=300):
            question = gr.Textbox(label="Question")
            with gr.Row():
                audio_source = gr.Radio(choices=["Microphone", "Audio File"], label="Select Audio Source")
                audio_file = gr.Audio(sources="upload", type="filepath", visible=False)
                audio_mic = gr.Audio(sources="microphone", type="filepath", visible=False)
            context_text = gr.Textbox(label="Context Text")
            output_text = gr.Textbox(label="Output")

    def update_audio_input(source):
        if source == "Microphone":
            return gr.update(visible=True), gr.update(visible=False)
        elif source == "Audio File":
            return gr.update(visible=False), gr.update(visible=True)
        else:
            return gr.update(visible=False), gr.update(visible=False)

    audio_source.change(fn=update_audio_input, inputs=audio_source, outputs=[audio_mic, audio_file])
    submit_button = gr.Button("Submit")
    submit_button.click(fn=process_inputs, inputs=[image_input, audio_source, audio_file, audio_mic, context_text, question], outputs=output_text)

demo.launch(debug=True)