Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -190,10 +190,19 @@ def getAudioArray(audio_path):
|
|
190 |
speech, rate = librosa.load(audio_path, sr=16000)
|
191 |
return speech
|
192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
def getInputs(image_path, question, answer=""):
|
194 |
|
195 |
image_features = None
|
196 |
-
speech_text = ""
|
197 |
num_image_tokens = 0
|
198 |
|
199 |
if image_path is not None:
|
@@ -210,10 +219,10 @@ def getInputs(image_path, question, answer=""):
|
|
210 |
num_image_tokens = image_features.shape[1]
|
211 |
|
212 |
# Start text before putting image embedding
|
213 |
-
start_text = f"<|system|>\nYou are an assistant good at understanding the
|
214 |
|
215 |
# Prepare text input for causal language modeling
|
216 |
-
end_text = f"
|
217 |
|
218 |
# Tokenize the full texts
|
219 |
start_tokens = tokenizer(start_text, padding=True, truncation=True, max_length=512, return_tensors="pt")
|
@@ -240,12 +249,12 @@ model_location = "./MM_FT_C1"
|
|
240 |
|
241 |
model = MultimodalPhiModel.from_pretrained(model_location).to(device)
|
242 |
|
243 |
-
model_name = "microsoft/Phi-3.5-mini-instruct"
|
244 |
-
base_phi_model = AutoModelForCausalLM.from_pretrained(
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
).to(device)
|
249 |
|
250 |
def getStringAfter(output, start_str):
|
251 |
if start_str in output:
|
@@ -256,17 +265,12 @@ def getStringAfter(output, start_str):
|
|
256 |
answer = preprocess_text(answer)
|
257 |
return answer
|
258 |
|
|
|
|
|
|
|
|
|
259 |
|
260 |
-
def
|
261 |
-
if "<|assistant|>" in output:
|
262 |
-
answer = output.split("<|assistant|>")[1]
|
263 |
-
else:
|
264 |
-
answer = output
|
265 |
-
|
266 |
-
answer = preprocess_text(answer)
|
267 |
-
return answer
|
268 |
-
|
269 |
-
def generateOutput(image_path, audio_path, context_text, question, max_length=2):
|
270 |
answerPart = ""
|
271 |
speech_text = ""
|
272 |
if image_path is not None:
|
@@ -279,7 +283,8 @@ def generateOutput(image_path, audio_path, context_text, question, max_length=2)
|
|
279 |
tokens[0],
|
280 |
skip_special_tokens=True
|
281 |
)
|
282 |
-
answerPart = getStringAfter(output, "<|assistant|>")
|
|
|
283 |
print("Answerpart:", answerPart)
|
284 |
|
285 |
if audio_path is not None:
|
@@ -287,20 +292,21 @@ def generateOutput(image_path, audio_path, context_text, question, max_length=2)
|
|
287 |
print("Speech Text:", speech_text)
|
288 |
|
289 |
if (question is None) or (question == ""):
|
290 |
-
question = "
|
291 |
|
292 |
input_text = (
|
293 |
-
"<|system|>\
|
294 |
-
"and answer the question
|
295 |
-
f"<|end|>\n<|user|>\n<|context|>{answerPart}\n{speech_text}\n{context_text}"
|
296 |
-
f"\n<|question|>: {question}\n<|end|>\n<|assistant|>\n"
|
297 |
)
|
298 |
print("input_text:", input_text)
|
299 |
start_tokens = tokenizer(input_text, padding=True, truncation=True, max_length=1024, return_tensors="pt")['input_ids'].to(device)
|
|
|
300 |
# base_phi_model.generate(start_tokens, max_length=2, do_sample=False, pad_token_id=tokenizer.pad_token_id)
|
301 |
|
302 |
output_text = tokenizer.decode(
|
303 |
-
base_phi_model.generate(start_tokens, max_length=1024, do_sample=False, pad_token_id=tokenizer.pad_token_id)[0],
|
304 |
skip_special_tokens=True
|
305 |
)
|
306 |
|
@@ -309,12 +315,6 @@ def generateOutput(image_path, audio_path, context_text, question, max_length=2)
|
|
309 |
|
310 |
title = "Created Fine Tuned MultiModal model"
|
311 |
description = "Test the fine tuned multimodal model created using clip, phi3.5 mini instruct, whisper models"
|
312 |
-
examples = [
|
313 |
-
["./images/COCO_train2014_000000581181.jpg", None, None, None, None, "Describe what is happening in this image."],
|
314 |
-
[None, "Audio File", "./audio/03-01-01-01-01-01-01.wav", None, None, "Describe what is the person trying to tell in this audio."],
|
315 |
-
]
|
316 |
-
|
317 |
-
# [None, "Microphone", None, "example_audio_mic.wav", "Context without image.", "What is the result?"],
|
318 |
|
319 |
demo = gr.Blocks()
|
320 |
|
@@ -332,18 +332,20 @@ def process_inputs(image, audio_source, audio_file, audio_mic, context_text, que
|
|
332 |
return answer
|
333 |
|
334 |
with demo:
|
|
|
|
|
|
|
335 |
with gr.Row():
|
336 |
with gr.Column(scale=1, min_width=300):
|
337 |
image_input = gr.Image(type="filepath", label="Upload Image")
|
338 |
with gr.Column(scale=2, min_width=300):
|
339 |
question = gr.Textbox(label="Question")
|
|
|
|
|
|
|
|
|
|
|
340 |
output_text = gr.Textbox(label="Output")
|
341 |
-
with gr.Row():
|
342 |
-
audio_source = gr.Radio(choices=["Microphone", "Audio File"], label="Select Audio Source")
|
343 |
-
audio_file = gr.Audio(sources="upload", type="filepath", visible=False)
|
344 |
-
audio_mic = gr.Audio(sources="microphone", type="filepath", visible=False)
|
345 |
-
with gr.Row():
|
346 |
-
context_text = gr.Textbox(label="Context Text")
|
347 |
|
348 |
def update_audio_input(source):
|
349 |
if source == "Microphone":
|
|
|
190 |
speech, rate = librosa.load(audio_path, sr=16000)
|
191 |
return speech
|
192 |
|
193 |
+
# Start text before putting image embedding
|
194 |
+
start_text = "<|system|> \n You are an assistant good at understanding the context.<|end|> \n <|user|> \n"
|
195 |
+
# Prepare text input for causal language modeling
|
196 |
+
end_text = "\n Describe the objects and their relationship in the given context.<|end|> \n <|assistant|> \n"
|
197 |
+
|
198 |
+
words = nltk.word_tokenize(start_text) + nltk.word_tokenize(end_text)
|
199 |
+
input_words = list(set(words))
|
200 |
+
# print("Input words:",input_words)
|
201 |
+
|
202 |
+
|
203 |
def getInputs(image_path, question, answer=""):
|
204 |
|
205 |
image_features = None
|
|
|
206 |
num_image_tokens = 0
|
207 |
|
208 |
if image_path is not None:
|
|
|
219 |
num_image_tokens = image_features.shape[1]
|
220 |
|
221 |
# Start text before putting image embedding
|
222 |
+
start_text = f"<|system|>\nYou are an assistant good at understanding the context.<|end|>\n<|user|>\n "
|
223 |
|
224 |
# Prepare text input for causal language modeling
|
225 |
+
end_text = f" .\n Describe the objects and their relationship from the context. <|end|>\n<|assistant|>\n {answer}"
|
226 |
|
227 |
# Tokenize the full texts
|
228 |
start_tokens = tokenizer(start_text, padding=True, truncation=True, max_length=512, return_tensors="pt")
|
|
|
249 |
|
250 |
model = MultimodalPhiModel.from_pretrained(model_location).to(device)
|
251 |
|
252 |
+
# model_name = "microsoft/Phi-3.5-mini-instruct"
|
253 |
+
# base_phi_model = AutoModelForCausalLM.from_pretrained(
|
254 |
+
# model_name,
|
255 |
+
# torch_dtype=torch.bfloat16,
|
256 |
+
# trust_remote_code=True,
|
257 |
+
# ).to(device)
|
258 |
|
259 |
def getStringAfter(output, start_str):
|
260 |
if start_str in output:
|
|
|
265 |
answer = preprocess_text(answer)
|
266 |
return answer
|
267 |
|
268 |
+
def getAnswerPart(output):
|
269 |
+
output_words = nltk.word_tokenize(output)
|
270 |
+
filtered_words = [word for word in output_words if word.lower() not in [w.lower() for w in input_words]]
|
271 |
+
return ' '.join(filtered_words)
|
272 |
|
273 |
+
def generateOutput(image_path, audio_path, context_text, question, max_length=3):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
answerPart = ""
|
275 |
speech_text = ""
|
276 |
if image_path is not None:
|
|
|
283 |
tokens[0],
|
284 |
skip_special_tokens=True
|
285 |
)
|
286 |
+
# answerPart = getStringAfter(output, "<|assistant|>")
|
287 |
+
answerPart = getAnswerPart(output)
|
288 |
print("Answerpart:", answerPart)
|
289 |
|
290 |
if audio_path is not None:
|
|
|
292 |
print("Speech Text:", speech_text)
|
293 |
|
294 |
if (question is None) or (question == ""):
|
295 |
+
question = " Describe the objects and their relationships in 1 sentence."
|
296 |
|
297 |
input_text = (
|
298 |
+
"<|system|>\n Please understand the context "
|
299 |
+
"and answer the question in 1 or 2 summarized sentences.\n"
|
300 |
+
f"<|end|>\n<|user|>\n<|context|> {answerPart} \n {speech_text} \n {context_text} "
|
301 |
+
f"\n<|question|>: {question} \n<|end|>\n<|assistant|>\n"
|
302 |
)
|
303 |
print("input_text:", input_text)
|
304 |
start_tokens = tokenizer(input_text, padding=True, truncation=True, max_length=1024, return_tensors="pt")['input_ids'].to(device)
|
305 |
+
attention_mask = tokens['attention_mask'].to(device)
|
306 |
# base_phi_model.generate(start_tokens, max_length=2, do_sample=False, pad_token_id=tokenizer.pad_token_id)
|
307 |
|
308 |
output_text = tokenizer.decode(
|
309 |
+
model.base_phi_model.generate(start_tokens, attention_mask=attention_mask, max_length=1024, do_sample=False, pad_token_id=tokenizer.pad_token_id)[0],
|
310 |
skip_special_tokens=True
|
311 |
)
|
312 |
|
|
|
315 |
|
316 |
title = "Created Fine Tuned MultiModal model"
|
317 |
description = "Test the fine tuned multimodal model created using clip, phi3.5 mini instruct, whisper models"
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
|
319 |
demo = gr.Blocks()
|
320 |
|
|
|
332 |
return answer
|
333 |
|
334 |
with demo:
|
335 |
+
gr.Markdown(f"# {title}")
|
336 |
+
gr.Markdown(f" {description}")
|
337 |
+
|
338 |
with gr.Row():
|
339 |
with gr.Column(scale=1, min_width=300):
|
340 |
image_input = gr.Image(type="filepath", label="Upload Image")
|
341 |
with gr.Column(scale=2, min_width=300):
|
342 |
question = gr.Textbox(label="Question")
|
343 |
+
with gr.Row():
|
344 |
+
audio_source = gr.Radio(choices=["Microphone", "Audio File"], label="Select Audio Source")
|
345 |
+
audio_file = gr.Audio(sources="upload", type="filepath", visible=False)
|
346 |
+
audio_mic = gr.Audio(sources="microphone", type="filepath", visible=False)
|
347 |
+
context_text = gr.Textbox(label="Context Text")
|
348 |
output_text = gr.Textbox(label="Output")
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
|
350 |
def update_audio_input(source):
|
351 |
if source == "Microphone":
|