Spaces:
Running
Running
import gradio as gr | |
import cv2 | |
import numpy as np | |
import os | |
import json | |
from PIL import Image | |
import io | |
import base64 | |
from openai import OpenAI | |
from ultralytics import YOLO | |
# Define the Latex2Layout model path | |
model_path = "latex2layout_object_detection_yolov8.pt" | |
# Verify model file existence | |
if not os.path.exists(model_path): | |
raise FileNotFoundError(f"Model file not found at {model_path}") | |
# Load the Latex2Layout model with error handling | |
try: | |
model = YOLO(model_path) | |
except Exception as e: | |
raise RuntimeError(f"Failed to load Latex2Layout model: {e}") | |
# Qwen API configuration | |
QWEN_BASE_URL = "https://dashscope.aliyuncs.com/compatible-mode/v1" | |
QWEN_MODELS = { | |
"Qwen2.5-VL-3B-Instruct": "qwen2.5-vl-3b-instruct", | |
"Qwen2.5-VL-7B-Instruct": "qwen2.5-vl-7b-instruct", | |
"Qwen2.5-VL-14B-Instruct": "qwen2.5-vl-14b-instruct", | |
} | |
# Default system prompt template | |
default_system_prompt = """You are an assistant specialized in document layout analysis. | |
The following layout elements were detected in the image (confidence >= 0.5): | |
{layout_info} | |
Use this information and the image to answer layout-related questions.""" | |
def encode_image(image_array): | |
""" | |
Convert a numpy array image to a base64-encoded string. | |
Args: | |
image_array: Numpy array representing the image. | |
Returns: | |
str: Base64-encoded string of the image. | |
""" | |
try: | |
pil_image = Image.fromarray(image_array) | |
img_byte_arr = io.BytesIO() | |
pil_image.save(img_byte_arr, format='PNG') | |
return base64.b64encode(img_byte_arr.getvalue()).decode("utf-8") | |
except Exception as e: | |
raise ValueError(f"Failed to encode image: {e}") | |
def detect_layout(image, confidence_threshold=0.5): | |
""" | |
Detect layout elements in the uploaded image using the Latex2Layout model. | |
Args: | |
image: Uploaded image as a numpy array. | |
confidence_threshold: Minimum confidence score to retain detections (default: 0.5). | |
Returns: | |
tuple: (annotated_image, layout_info_str) | |
- annotated_image: Image with bounding boxes drawn (confidence >= 0.5). | |
- layout_info_str: JSON string of layout detections (confidence >= 0.5). | |
""" | |
if image is None or not isinstance(image, np.ndarray): | |
return None, "Error: No image uploaded or invalid image format." | |
try: | |
# Perform detection | |
results = model(image) | |
result = results[0] | |
annotated_image = image.copy() | |
layout_info = [] | |
# Process detections | |
for box in result.boxes: | |
conf = float(box.conf[0]) | |
if conf < confidence_threshold: | |
continue | |
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy()) | |
cls_id = int(box.cls[0]) | |
cls_name = result.names[cls_id] | |
color = tuple(np.random.randint(0, 255, 3).tolist()) | |
cv2.rectangle(annotated_image, (x1, y1), (x2, y2), color, 2) | |
label = f"{cls_name} {conf:.2f}" | |
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) | |
cv2.rectangle(annotated_image, (x1, y1 - label_height - 5), (x1 + label_width, y1), color, -1) | |
cv2.putText(annotated_image, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) | |
layout_info.append({ | |
"bbox": [x1, y1, x2, y2], | |
"class": cls_name, | |
"confidence": conf | |
}) | |
layout_info_str = json.dumps(layout_info, indent=2) if layout_info else "No layout elements detected with confidence >= 0.5." | |
return annotated_image, layout_info_str | |
except Exception as e: | |
return None, f"Error during layout detection: {str(e)}" | |
def detect_example_image(): | |
""" | |
Load and detect layout elements in the example image (./image1.png). | |
Returns: | |
tuple: (example_image, annotated_image, layout_info_str) | |
- example_image: Original example image. | |
- annotated_image: Annotated example image. | |
- layout_info_str: JSON string of layout detections. | |
""" | |
example_image_path = "./image1.png" | |
if not os.path.exists(example_image_path): | |
return None, None, "Error: Example image not found." | |
try: | |
# Load image in BGR and convert to RGB | |
bgr_image = cv2.imread(example_image_path) | |
if bgr_image is None: | |
return None, None, "Error: Failed to load example image." | |
rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB) | |
# Run detection | |
annotated_image, layout_info_str = detect_layout(rgb_image) | |
return rgb_image, annotated_image, layout_info_str | |
except Exception as e: | |
return None, None, f"Error processing example image: {str(e)}" | |
def qa_about_layout(image, question, layout_info, api_key, model_name, system_prompt_template): | |
""" | |
Answer layout-related questions using the Qwen API with an editable system prompt. | |
Args: | |
image: Uploaded image as a numpy array. | |
question: User's question about the layout. | |
layout_info: JSON string of layout detection results. | |
api_key: User's Qwen API key. | |
model_name: Selected Qwen model name. | |
system_prompt_template: Editable system prompt template. | |
Returns: | |
str: Qwen's response to the question. | |
""" | |
if image is None or not isinstance(image, np.ndarray): | |
return "Error: Please upload a valid image." | |
if not question: | |
return "Error: Please enter a question." | |
if not api_key: | |
return "Error: Please provide a Qwen API key." | |
if not layout_info: | |
return "Error: No layout information available. Detect layout first." | |
try: | |
# Encode image to base64 | |
base64_image = encode_image(image) | |
# Map model name to ID | |
model_id = QWEN_MODELS.get(model_name) | |
if not model_id: | |
return "Error: Invalid Qwen model selected." | |
# Replace placeholder in system prompt with layout info | |
system_prompt = system_prompt_template.replace("{layout_info}", layout_info) | |
# Initialize OpenAI client for Qwen API | |
client = OpenAI(api_key=api_key, base_url=QWEN_BASE_URL) | |
# Prepare API request messages | |
messages = [ | |
{"role": "system", "content": [{"type": "text", "text": system_prompt}]}, | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}, | |
{"type": "text", "text": question}, | |
], | |
}, | |
] | |
# Call Qwen API | |
completion = client.chat.completions.create(model=model_id, messages=messages) | |
return completion.choices[0].message.content | |
except Exception as e: | |
return f"Error during QA: {str(e)}" | |
# Build Gradio interface | |
with gr.Blocks(title="Latex2Layout QA System") as demo: | |
gr.Markdown("# Latex2Layout QA System") | |
gr.Markdown("Upload an image or use the example to detect layout elements and ask questions using Qwen models.") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
input_image = gr.Image(label="Upload Image", type="numpy") | |
detect_btn = gr.Button("Detect Layout") | |
example_btn = gr.Button("Detect Example Image") | |
gr.Markdown("**Tip**: Use clear images for best results.") | |
with gr.Column(scale=1): | |
output_image = gr.Image(label="Detected Layout") | |
layout_info = gr.Textbox(label="Layout Information", lines=10, interactive=False) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
api_key_input = gr.Textbox( | |
label="Qwen API Key", | |
placeholder="Enter your Qwen API key", | |
type="password" | |
) | |
model_select = gr.Dropdown( | |
label="Select Qwen Model", | |
choices=list(QWEN_MODELS.keys()), | |
value="Qwen2.5-VL-3B-Instruct" | |
) | |
gr.Markdown("**System Prompt Template**: Edit the prompt sent to Qwen. Include `{layout_info}` to insert detection results.") | |
system_prompt_input = gr.Textbox( | |
label="System Prompt Template", | |
value=default_system_prompt, | |
lines=5, | |
placeholder="Edit the system prompt here. Keep {layout_info} to include detection results." | |
) | |
question_input = gr.Textbox(label="Ask About the Layout", placeholder="e.g., 'Where is the heading?'") | |
qa_btn = gr.Button("Ask Question") | |
with gr.Column(scale=1): | |
answer_output = gr.Textbox(label="Answer", lines=5, interactive=False) | |
# Event handlers | |
detect_btn.click( | |
fn=detect_layout, | |
inputs=[input_image], | |
outputs=[output_image, layout_info] | |
) | |
example_btn.click( | |
fn=detect_example_image, | |
inputs=[], | |
outputs=[input_image, output_image, layout_info] | |
) | |
qa_btn.click( | |
fn=qa_about_layout, | |
inputs=[input_image, question_input, layout_info, api_key_input, model_select, system_prompt_input], | |
outputs=[answer_output] | |
) | |
# Launch the application | |
if __name__ == "__main__": | |
demo.launch() | |