Spaces:
Running
Running
File size: 9,348 Bytes
71e7eab 923f8ae 1ff383d f56f5ba b1925a1 6a41fcf f56f5ba 6a41fcf f56f5ba 6a41fcf f56f5ba 3ab79b5 1ff383d 6a41fcf 71e7eab 55866d0 1ff383d 71e7eab 6a41fcf 71e7eab 6a41fcf 71e7eab 6a41fcf 71e7eab 6a41fcf 1ff383d 6a41fcf 1ff383d 6a41fcf 1ff383d 6a41fcf 1ff383d 6a41fcf b1925a1 6a41fcf f56f5ba 1ff383d f56f5ba 6a41fcf f56f5ba 6a41fcf f56f5ba 6a41fcf 1ff383d f56f5ba 6a41fcf 1ff383d 6a41fcf f56f5ba 6a41fcf f56f5ba 6a41fcf f56f5ba 6a41fcf b1925a1 1ff383d 15de4c7 55866d0 15de4c7 55866d0 6a41fcf 15de4c7 6a41fcf 55866d0 6a41fcf 15de4c7 6a41fcf 15de4c7 6a41fcf 1ff383d 6a41fcf b1925a1 1ff383d 6a41fcf 55866d0 1ff383d 6a41fcf 1ff383d 6a41fcf 1ff383d 6a41fcf 1ff383d 6a41fcf 1ff383d 6a41fcf 1ff383d 6a41fcf 1ff383d 6a41fcf b1925a1 1ff383d b1925a1 6a41fcf 1ff383d 55866d0 6a41fcf 71e7eab 1ff383d 3ab79b5 1ff383d 55866d0 6a41fcf 1ff383d 6a41fcf 1ff383d 6a41fcf 1ff383d 6a41fcf 55866d0 6a41fcf 1ff383d 6a41fcf 1ff383d 6a41fcf 1ff383d 923f8ae 1ff383d 3ab79b5 1ff383d 923f8ae 55866d0 1ff383d 55866d0 1ff383d 71e7eab 88158ba 71e7eab 88158ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import gradio as gr
import cv2
import numpy as np
import os
import json
from PIL import Image
import io
import base64
from openai import OpenAI
from ultralytics import YOLO
# Define the Latex2Layout model path
model_path = "latex2layout_object_detection_yolov8.pt"
# Verify model file existence
if not os.path.exists(model_path):
raise FileNotFoundError(f"Model file not found at {model_path}")
# Load the Latex2Layout model with error handling
try:
model = YOLO(model_path)
except Exception as e:
raise RuntimeError(f"Failed to load Latex2Layout model: {e}")
# Qwen API configuration
QWEN_BASE_URL = "https://dashscope.aliyuncs.com/compatible-mode/v1"
QWEN_MODELS = {
"Qwen2.5-VL-3B-Instruct": "qwen2.5-vl-3b-instruct",
"Qwen2.5-VL-7B-Instruct": "qwen2.5-vl-7b-instruct",
"Qwen2.5-VL-14B-Instruct": "qwen2.5-vl-14b-instruct",
}
# Default system prompt template
default_system_prompt = """You are an assistant specialized in document layout analysis.
The following layout elements were detected in the image (confidence >= 0.5):
{layout_info}
Use this information and the image to answer layout-related questions."""
def encode_image(image_array):
"""
Convert a numpy array image to a base64-encoded string.
Args:
image_array: Numpy array representing the image.
Returns:
str: Base64-encoded string of the image.
"""
try:
pil_image = Image.fromarray(image_array)
img_byte_arr = io.BytesIO()
pil_image.save(img_byte_arr, format='PNG')
return base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
except Exception as e:
raise ValueError(f"Failed to encode image: {e}")
def detect_layout(image, confidence_threshold=0.5):
"""
Detect layout elements in the uploaded image using the Latex2Layout model.
Args:
image: Uploaded image as a numpy array.
confidence_threshold: Minimum confidence score to retain detections (default: 0.5).
Returns:
tuple: (annotated_image, layout_info_str)
- annotated_image: Image with bounding boxes drawn (confidence >= 0.5).
- layout_info_str: JSON string of layout detections (confidence >= 0.5).
"""
if image is None or not isinstance(image, np.ndarray):
return None, "Error: No image uploaded or invalid image format."
try:
# Perform detection
results = model(image)
result = results[0]
annotated_image = image.copy()
layout_info = []
# Process detections
for box in result.boxes:
conf = float(box.conf[0])
if conf < confidence_threshold:
continue
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy())
cls_id = int(box.cls[0])
cls_name = result.names[cls_id]
color = tuple(np.random.randint(0, 255, 3).tolist())
cv2.rectangle(annotated_image, (x1, y1), (x2, y2), color, 2)
label = f"{cls_name} {conf:.2f}"
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
cv2.rectangle(annotated_image, (x1, y1 - label_height - 5), (x1 + label_width, y1), color, -1)
cv2.putText(annotated_image, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
layout_info.append({
"bbox": [x1, y1, x2, y2],
"class": cls_name,
"confidence": conf
})
layout_info_str = json.dumps(layout_info, indent=2) if layout_info else "No layout elements detected with confidence >= 0.5."
return annotated_image, layout_info_str
except Exception as e:
return None, f"Error during layout detection: {str(e)}"
def detect_example_image():
"""
Load and detect layout elements in the example image (./image1.png).
Returns:
tuple: (example_image, annotated_image, layout_info_str)
- example_image: Original example image.
- annotated_image: Annotated example image.
- layout_info_str: JSON string of layout detections.
"""
example_image_path = "./image1.png"
if not os.path.exists(example_image_path):
return None, None, "Error: Example image not found."
try:
# Load image in BGR and convert to RGB
bgr_image = cv2.imread(example_image_path)
if bgr_image is None:
return None, None, "Error: Failed to load example image."
rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)
# Run detection
annotated_image, layout_info_str = detect_layout(rgb_image)
return rgb_image, annotated_image, layout_info_str
except Exception as e:
return None, None, f"Error processing example image: {str(e)}"
def qa_about_layout(image, question, layout_info, api_key, model_name, system_prompt_template):
"""
Answer layout-related questions using the Qwen API with an editable system prompt.
Args:
image: Uploaded image as a numpy array.
question: User's question about the layout.
layout_info: JSON string of layout detection results.
api_key: User's Qwen API key.
model_name: Selected Qwen model name.
system_prompt_template: Editable system prompt template.
Returns:
str: Qwen's response to the question.
"""
if image is None or not isinstance(image, np.ndarray):
return "Error: Please upload a valid image."
if not question:
return "Error: Please enter a question."
if not api_key:
return "Error: Please provide a Qwen API key."
if not layout_info:
return "Error: No layout information available. Detect layout first."
try:
# Encode image to base64
base64_image = encode_image(image)
# Map model name to ID
model_id = QWEN_MODELS.get(model_name)
if not model_id:
return "Error: Invalid Qwen model selected."
# Replace placeholder in system prompt with layout info
system_prompt = system_prompt_template.replace("{layout_info}", layout_info)
# Initialize OpenAI client for Qwen API
client = OpenAI(api_key=api_key, base_url=QWEN_BASE_URL)
# Prepare API request messages
messages = [
{"role": "system", "content": [{"type": "text", "text": system_prompt}]},
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}},
{"type": "text", "text": question},
],
},
]
# Call Qwen API
completion = client.chat.completions.create(model=model_id, messages=messages)
return completion.choices[0].message.content
except Exception as e:
return f"Error during QA: {str(e)}"
# Build Gradio interface
with gr.Blocks(title="Latex2Layout QA System") as demo:
gr.Markdown("# Latex2Layout QA System")
gr.Markdown("Upload an image or use the example to detect layout elements and ask questions using Qwen models.")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="Upload Image", type="numpy")
detect_btn = gr.Button("Detect Layout")
example_btn = gr.Button("Detect Example Image")
gr.Markdown("**Tip**: Use clear images for best results.")
with gr.Column(scale=1):
output_image = gr.Image(label="Detected Layout")
layout_info = gr.Textbox(label="Layout Information", lines=10, interactive=False)
with gr.Row():
with gr.Column(scale=1):
api_key_input = gr.Textbox(
label="Qwen API Key",
placeholder="Enter your Qwen API key",
type="password"
)
model_select = gr.Dropdown(
label="Select Qwen Model",
choices=list(QWEN_MODELS.keys()),
value="Qwen2.5-VL-3B-Instruct"
)
gr.Markdown("**System Prompt Template**: Edit the prompt sent to Qwen. Include `{layout_info}` to insert detection results.")
system_prompt_input = gr.Textbox(
label="System Prompt Template",
value=default_system_prompt,
lines=5,
placeholder="Edit the system prompt here. Keep {layout_info} to include detection results."
)
question_input = gr.Textbox(label="Ask About the Layout", placeholder="e.g., 'Where is the heading?'")
qa_btn = gr.Button("Ask Question")
with gr.Column(scale=1):
answer_output = gr.Textbox(label="Answer", lines=5, interactive=False)
# Event handlers
detect_btn.click(
fn=detect_layout,
inputs=[input_image],
outputs=[output_image, layout_info]
)
example_btn.click(
fn=detect_example_image,
inputs=[],
outputs=[input_image, output_image, layout_info]
)
qa_btn.click(
fn=qa_about_layout,
inputs=[input_image, question_input, layout_info, api_key_input, model_select, system_prompt_input],
outputs=[answer_output]
)
# Launch the application
if __name__ == "__main__":
demo.launch()
|