meme-analyzer / app.py
Chanlefe's picture
Update app.py
19cc904 verified
import gradio as gr
import torch
import torch.nn as nn
from transformers import pipeline, BertTokenizer, CLIPProcessor
from PIL import Image
import pytesseract
import cv2
import numpy as np
# Initialize OCR
# Note: You need to install tesseract-ocr on your system
# For Hugging Face Spaces, add: apt-get install -y tesseract-ocr
# to a file called packages.txt
class MemeAnalyzerWithOCR:
def __init__(self):
# Sentiment Analysis for text (Positive, Negative, Neutral)
self.text_classifier = pipeline(
"sentiment-analysis",
model="cardiffnlp/twitter-roberta-base-sentiment-latest"
)
# Hate Speech Detection for the complete meme
self.hate_detector = pipeline(
"text-classification",
model="unitary/toxic-bert"
)
# Image understanding (not specifically for hate, but for context)
self.image_classifier = pipeline(
"image-classification",
model="google/vit-base-patch16-224"
)
def extract_text_from_image(self, image):
"""Extract text from meme using OCR"""
try:
# Convert PIL to opencv format
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# Preprocess image for better OCR
gray = cv2.cvtColor(image_cv, cv2.COLOR_BGR2GRAY)
# Increase contrast
enhanced = cv2.convertScaleAbs(gray, alpha=1.5, beta=0)
# Extract text
text = pytesseract.image_to_string(enhanced)
return text.strip()
except Exception as e:
return ""
def analyze_meme(self, text_input, image):
results = {
'extracted_text': '',
'sentiment': None,
'hate_detection': None,
'image_content': None,
'combined_analysis': ''
}
# Step 1: Extract text from image if provided
if image is not None:
extracted_text = self.extract_text_from_image(image)
results['extracted_text'] = extracted_text
# Analyze image content
image_results = self.image_classifier(image)
results['image_content'] = image_results[0]['label']
# Step 2: Combine manual text input with OCR text
combined_text = ""
if text_input:
combined_text = text_input
if results['extracted_text']:
combined_text = combined_text + " " + results['extracted_text'] if combined_text else results['extracted_text']
if not combined_text:
return "No text found! Please provide text or an image with text."
# Step 3: Sentiment Analysis (Positive, Negative, Neutral)
sentiment_result = self.text_classifier(combined_text)[0]
# Map to your categories
sentiment_mapping = {
'positive': 'Positive',
'negative': 'Negative',
'neutral': 'Neutral'
}
results['sentiment'] = {
'label': sentiment_mapping.get(sentiment_result['label'].lower(), 'Neutral'),
'score': sentiment_result['score']
}
# Step 4: Hate Speech Detection
hate_result = self.hate_detector(combined_text)[0]
# Determine if hateful
is_hateful = hate_result['label'] == 'TOXIC' and hate_result['score'] > 0.7
results['hate_detection'] = {
'label': 'Hateful' if is_hateful else 'Non-hateful',
'score': hate_result['score'] if is_hateful else 1 - hate_result['score']
}
# Step 5: Format results
output = "## πŸ“Š Meme Analysis Results\n\n"
# Show extracted text
if results['extracted_text']:
output += f"### πŸ” Text Extracted from Image (OCR):\n`{results['extracted_text']}`\n\n"
# Sentiment Analysis
output += f"### 😊 Sentiment Analysis (BERT):\n"
output += f"**{results['sentiment']['label']}** "
output += f"(Confidence: {results['sentiment']['score']:.1%})\n\n"
# Hate Detection
output += f"### 🚫 Hate Speech Detection:\n"
output += f"**{results['hate_detection']['label']}** "
output += f"(Confidence: {results['hate_detection']['score']:.1%})\n\n"
# Image content
if results['image_content']:
output += f"### πŸ–ΌοΈ Image Content:\n{results['image_content']}\n\n"
# Combined analysis
output += "### πŸ“ Analyzed Text:\n"
output += f"`{combined_text}`\n\n"
# Warning for hateful content
if is_hateful:
output += "⚠️ **Warning**: This content may contain hateful or offensive material.\n"
return output
# Initialize analyzer
analyzer = MemeAnalyzerWithOCR()
# Create Gradio interface
demo = gr.Interface(
fn=analyzer.analyze_meme,
inputs=[
gr.Textbox(
label="πŸ“ Manual Text Input (Optional)",
placeholder="Enter text if not in image...",
),
gr.Image(
label="πŸ“Έ Upload Meme Image",
type="pil",
)
],
outputs=gr.Markdown(label="Analysis Results"),
title="🎭 Meme Analyzer with OCR",
description="""
This tool analyzes memes by:
1. **Extracting text** from images using OCR
2. **Sentiment analysis** (Positive/Negative/Neutral) using BERT
3. **Hate speech detection** (Hateful/Non-hateful)
4. **Image content analysis**
Upload a meme image and/or provide text to analyze!
""",
examples=[
["This is hilarious!", None],
["I hate everyone", None]
],
theme=gr.themes.Soft()
)
# Launch
demo.launch()
# For Hugging Face Spaces, create these additional files:
# requirements.txt:
"""
gradio
torch
transformers
pillow
opencv-python
pytesseract
numpy
"""
# packages.txt (for system dependencies):
"""
tesseract-ocr
"""