Spaces:
Running
Running
File size: 6,098 Bytes
abb7e37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import gradio as gr
import torch
import torch.nn as nn
from transformers import pipeline, BertTokenizer, CLIPProcessor
from PIL import Image
import pytesseract
import cv2
import numpy as np
# Initialize OCR
# Note: You need to install tesseract-ocr on your system
# For Hugging Face Spaces, add: apt-get install -y tesseract-ocr
# to a file called packages.txt
class MemeAnalyzerWithOCR:
def __init__(self):
# Sentiment Analysis for text (Positive, Negative, Neutral)
self.text_classifier = pipeline(
"sentiment-analysis",
model="cardiffnlp/twitter-roberta-base-sentiment-latest"
)
# Hate Speech Detection for the complete meme
self.hate_detector = pipeline(
"text-classification",
model="unitary/toxic-bert"
)
# Image understanding (not specifically for hate, but for context)
self.image_classifier = pipeline(
"image-classification",
model="google/vit-base-patch16-224"
)
def extract_text_from_image(self, image):
"""Extract text from meme using OCR"""
try:
# Convert PIL to opencv format
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# Preprocess image for better OCR
gray = cv2.cvtColor(image_cv, cv2.COLOR_BGR2GRAY)
# Increase contrast
enhanced = cv2.convertScaleAbs(gray, alpha=1.5, beta=0)
# Extract text
text = pytesseract.image_to_string(enhanced)
return text.strip()
except Exception as e:
return ""
def analyze_meme(self, text_input, image):
results = {
'extracted_text': '',
'sentiment': None,
'hate_detection': None,
'image_content': None,
'combined_analysis': ''
}
# Step 1: Extract text from image if provided
if image is not None:
extracted_text = self.extract_text_from_image(image)
results['extracted_text'] = extracted_text
# Analyze image content
image_results = self.image_classifier(image)
results['image_content'] = image_results[0]['label']
# Step 2: Combine manual text input with OCR text
combined_text = ""
if text_input:
combined_text = text_input
if results['extracted_text']:
combined_text = combined_text + " " + results['extracted_text'] if combined_text else results['extracted_text']
if not combined_text:
return "No text found! Please provide text or an image with text."
# Step 3: Sentiment Analysis (Positive, Negative, Neutral)
sentiment_result = self.text_classifier(combined_text)[0]
# Map to your categories
sentiment_mapping = {
'positive': 'Positive',
'negative': 'Negative',
'neutral': 'Neutral'
}
results['sentiment'] = {
'label': sentiment_mapping.get(sentiment_result['label'].lower(), 'Neutral'),
'score': sentiment_result['score']
}
# Step 4: Hate Speech Detection
hate_result = self.hate_detector(combined_text)[0]
# Determine if hateful
is_hateful = hate_result['label'] == 'TOXIC' and hate_result['score'] > 0.7
results['hate_detection'] = {
'label': 'Hateful' if is_hateful else 'Non-hateful',
'score': hate_result['score'] if is_hateful else 1 - hate_result['score']
}
# Step 5: Format results
output = "## π Meme Analysis Results\n\n"
# Show extracted text
if results['extracted_text']:
output += f"### π Text Extracted from Image (OCR):\n`{results['extracted_text']}`\n\n"
# Sentiment Analysis
output += f"### π Sentiment Analysis (BERT):\n"
output += f"**{results['sentiment']['label']}** "
output += f"(Confidence: {results['sentiment']['score']:.1%})\n\n"
# Hate Detection
output += f"### π« Hate Speech Detection:\n"
output += f"**{results['hate_detection']['label']}** "
output += f"(Confidence: {results['hate_detection']['score']:.1%})\n\n"
# Image content
if results['image_content']:
output += f"### πΌοΈ Image Content:\n{results['image_content']}\n\n"
# Combined analysis
output += "### π Analyzed Text:\n"
output += f"`{combined_text}`\n\n"
# Warning for hateful content
if is_hateful:
output += "β οΈ **Warning**: This content may contain hateful or offensive material.\n"
return output
# Initialize analyzer
analyzer = MemeAnalyzerWithOCR()
# Create Gradio interface
demo = gr.Interface(
fn=analyzer.analyze_meme,
inputs=[
gr.Textbox(
label="π Manual Text Input (Optional)",
placeholder="Enter text if not in image...",
),
gr.Image(
label="πΈ Upload Meme Image",
type="pil",
)
],
outputs=gr.Markdown(label="Analysis Results"),
title="π Meme Analyzer with OCR",
description="""
This tool analyzes memes by:
1. **Extracting text** from images using OCR
2. **Sentiment analysis** (Positive/Negative/Neutral) using BERT
3. **Hate speech detection** (Hateful/Non-hateful)
4. **Image content analysis**
Upload a meme image and/or provide text to analyze!
""",
examples=[
["This is hilarious!", None],
["I hate everyone", None]
],
theme=gr.themes.Soft()
)
# Launch
demo.launch()
# For Hugging Face Spaces, create these additional files:
# requirements.txt:
"""
gradio
torch
transformers
pillow
opencv-python
pytesseract
numpy
"""
# packages.txt (for system dependencies):
"""
tesseract-ocr
""" |