Spaces:
Runtime error
Runtime error
File size: 8,970 Bytes
b9ba714 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
"""
@author: Caglar Aytekin
contact: caglar@deepcause.ai
"""
import numpy as np
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
import warnings
from sklearn.model_selection import train_test_split
import torch
import pandas as pd
pd.set_option('display.max_rows', None) # None means show all rows
pd.set_option('display.max_columns', None) # None means show all columns
pd.set_option('display.width', None) # Use appropriate width to display columns
pd.set_option('display.max_colwidth', None) # Show full content of each column
warnings.filterwarnings("ignore")
def split_and_processing(X,y,categoricals,output_type,attribute_names):
#If every entryin a column of a dataframe is None drop it
columns_to_keep_mask = ~X.isna().all()
X = X.dropna(axis=1, how='all')
# Update the categoricals list to reflect the columns not dropped
categoricals = [cat for cat, keep in zip(categoricals, columns_to_keep_mask) if keep]
attribute_names= [cat for cat, keep in zip(attribute_names, columns_to_keep_mask) if keep]
# Split into train and remaining
X_train, X_remaining, y_train, y_remaining = train_test_split(X, y, test_size=0.2, random_state=42)
# Split remaining into validation and test
X_val, X_test, y_val, y_test = train_test_split(X_remaining, y_remaining, test_size=0.5, random_state=42)
# Initialize preprocessor
preprocessor=DataProcessor(categoricals,output_type)
#Fit and transform for training set
X_train=torch.from_numpy(preprocessor.fit_transform_X(X_train).values).float()
y_train=torch.from_numpy(preprocessor.fit_transform_y(y_train)).float()
if output_type<2:
y_train=y_train.unsqueeze(dim=-1)
else:
y_train=y_train.long()
#Transform for validation and test set
X_val=torch.from_numpy(preprocessor.transform_X(X_val).values).float()
y_val=torch.from_numpy(preprocessor.transform_y(y_val)).float()
if output_type<2:
y_val=y_val.unsqueeze(dim=-1)
else:
y_val=y_val.long()
X_test=torch.from_numpy(preprocessor.transform_X(X_test).values).float()
y_test=torch.from_numpy(preprocessor.transform_y(y_test)).float()
if output_type<2:
y_test=y_test.unsqueeze(dim=-1)
else:
y_test=y_test.long()
preprocessor.attribute_names=attribute_names
preprocessor.output_type=output_type
#Determine class no
if output_type==0:
output_dim=y_train.shape[1]
elif output_type==1:
output_dim=1
else:
output_dim=len(np.unique(y_train))
preprocessor.output_dim=output_dim
return X_train,X_val,X_test,y_train,y_val,y_test,preprocessor
class DataProcessor:
def __init__(self, categoricals, output_type):
self.categoricals = categoricals
self.output_type = output_type
self.label_encoders = {}
self.scaler = MinMaxScaler(feature_range=(-1, 1))
self.target_scaler = MinMaxScaler(feature_range=(-1, 1))
self.most_common_categories = {}
self.target_encoder = None # For binary and multiclass
self.unique_targets = None # To store unique targets for binary classification
self.category_details=[]
self.suggested_embeddings=None
self.encoders_for_nn={}
def fit_transform_X(self, X):
# Convert all numerical columns to float precision
X.iloc[:, ~np.array(self.categoricals)] = X.iloc[:, ~np.array(self.categoricals)].astype(float)
X.iloc[:, np.array(self.categoricals)] = X.iloc[:, np.array(self.categoricals)].astype(str)
X_transformed = X.copy()
for i, is_categorical in enumerate(self.categoricals):
if is_categorical:
encoder = LabelEncoder()
X_transformed.iloc[:, i] = encoder.fit_transform(X.iloc[:, i])
self.label_encoders[i] = encoder
self.encoders_for_nn[X_transformed.columns[i]] = dict(zip(encoder.classes_, encoder.transform(encoder.classes_)))
self.most_common_categories[i] = X.iloc[:, i].mode()[0]
self.category_details.append((i, len(encoder.classes_)))
else:
# Fill missing values with the median for numerical columns
X_transformed.iloc[:, i] = X.iloc[:, i].fillna(X.iloc[:, i].median())
# Scale numerical features
numerical_features = X_transformed.iloc[:, ~np.array(self.categoricals)]
if numerical_features.shape[-1]>0:
self.scaler.fit(numerical_features)
X_transformed.iloc[:, ~np.array(self.categoricals)] = self.scaler.transform(numerical_features)
self.suggested_embeddings=[max(2, int(np.log2(x[1]))) for x in self.category_details]
return X_transformed.astype(float)
def transform_X(self, X):
X.iloc[:, np.array(self.categoricals)] = X.iloc[:, np.array(self.categoricals)].astype(str)
X_transformed = X.copy()
for i, is_categorical in enumerate(self.categoricals):
if is_categorical:
encoder = self.label_encoders[i]
# Transform categories, replace unseen with most common category
X_transformed.iloc[:, i] = X.iloc[:, i].map(lambda x: x if x in encoder.classes_ else self.most_common_categories[i])
X_transformed.iloc[:, i] = encoder.transform(X_transformed.iloc[:, i])
else:
X_transformed.iloc[:, i] = X.iloc[:, i].fillna(X.iloc[:, i].mean())
# Scale numerical features
numerical_features = X_transformed.iloc[:, ~np.array(self.categoricals)]
if numerical_features.shape[-1]>0:
X_transformed.iloc[:, ~np.array(self.categoricals)] = self.scaler.transform(numerical_features)
return X_transformed.astype(float)
def inverse_transform_X(self, sample):
#inverse transform from pytorch tensor
sample=sample.detach().numpy()
sample_inverse_transformed = pd.DataFrame(sample.copy())
#Handle numerical features
numerical_features_indices = np.where(~np.array(self.categoricals))[0]
if len(numerical_features_indices)>0:
sample_inverse_transformed.iloc[:,numerical_features_indices] = self.scaler.inverse_transform(sample[:,numerical_features_indices])
for i, is_categorical in enumerate(self.categoricals):
if is_categorical:
encoder = self.label_encoders[i]
sample_inverse_transformed.iloc[:, i] = encoder.inverse_transform(sample[:, i].astype('int'))
sample_inverse_transformed.columns = self.attribute_names
return sample_inverse_transformed
def fit_transform_y(self, y):
if self.output_type == 0: # Regression
y_transformed = self.target_scaler.fit_transform(y.values.reshape(-1, 1)).flatten()
elif self.output_type == 1: # Binary classification
self.unique_targets = y.unique()
mapping = {category: idx for idx, category in enumerate(self.unique_targets)}
y_transformed = y.map(mapping).astype(int).values
elif self.output_type == 2: # Multiclass classification
self.target_encoder = LabelEncoder()
y_transformed = self.target_encoder.fit_transform(y)
else:
raise ValueError("Invalid output type")
return y_transformed
def transform_y(self, y):
if self.output_type == 0: # Regression
y_transformed = self.target_scaler.transform(y.values.reshape(-1, 1)).flatten()
elif self.output_type == 1: # Binary classification
mapping = {category: idx for idx, category in enumerate(self.unique_targets)}
y_transformed = y.map(mapping).astype(int).values
elif self.output_type == 2: # Multiclass classification
y_transformed = self.target_encoder.transform(y)
else:
raise ValueError("Invalid output type")
return y_transformed
def inverse_transform_y(self, nn_output):
if self.output_type == 0: # Regression
y_transformed=nn_output.squeeze().detach().numpy()
return self.target_scaler.inverse_transform(y_transformed.reshape(-1, 1)).flatten()
elif self.output_type == 1: # Binary classification
y_transformed=int(np.round(torch.sigmoid(nn_output).squeeze().detach().numpy()))
inverse_mapping = {idx: category for idx, category in enumerate(self.unique_targets)}
return inverse_mapping[y_transformed]
elif self.output_type == 2: # Multiclass classification
y_transformed=int(np.round(torch.argmax(nn_output).squeeze().detach().numpy()))
return self.target_encoder.inverse_transform([y_transformed])
else:
raise ValueError("Invalid output type")
|