Spaces:
Runtime error
Runtime error
CaglarAytekin
commited on
Commit
·
b9ba714
1
Parent(s):
1e7a8d6
first commit
Browse files- Causality_Example.png +0 -0
- DATA.py +198 -0
- DEMO.py +97 -0
- LEURN.py +695 -0
- LICENSE +201 -0
- Presentation_Product.pdf +0 -0
- Presentation_Technical.pdf +0 -0
- README.md +27 -13
- TRAINER.py +186 -0
- app.py +176 -0
- requirements.txt +7 -0
Causality_Example.png
ADDED
![]() |
DATA.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
@author: Caglar Aytekin
|
3 |
+
contact: caglar@deepcause.ai
|
4 |
+
"""
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
|
8 |
+
import warnings
|
9 |
+
from sklearn.model_selection import train_test_split
|
10 |
+
import torch
|
11 |
+
import pandas as pd
|
12 |
+
pd.set_option('display.max_rows', None) # None means show all rows
|
13 |
+
pd.set_option('display.max_columns', None) # None means show all columns
|
14 |
+
pd.set_option('display.width', None) # Use appropriate width to display columns
|
15 |
+
pd.set_option('display.max_colwidth', None) # Show full content of each column
|
16 |
+
|
17 |
+
warnings.filterwarnings("ignore")
|
18 |
+
|
19 |
+
def split_and_processing(X,y,categoricals,output_type,attribute_names):
|
20 |
+
#If every entryin a column of a dataframe is None drop it
|
21 |
+
columns_to_keep_mask = ~X.isna().all()
|
22 |
+
X = X.dropna(axis=1, how='all')
|
23 |
+
# Update the categoricals list to reflect the columns not dropped
|
24 |
+
categoricals = [cat for cat, keep in zip(categoricals, columns_to_keep_mask) if keep]
|
25 |
+
attribute_names= [cat for cat, keep in zip(attribute_names, columns_to_keep_mask) if keep]
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
# Split into train and remaining
|
30 |
+
X_train, X_remaining, y_train, y_remaining = train_test_split(X, y, test_size=0.2, random_state=42)
|
31 |
+
|
32 |
+
# Split remaining into validation and test
|
33 |
+
X_val, X_test, y_val, y_test = train_test_split(X_remaining, y_remaining, test_size=0.5, random_state=42)
|
34 |
+
|
35 |
+
# Initialize preprocessor
|
36 |
+
preprocessor=DataProcessor(categoricals,output_type)
|
37 |
+
|
38 |
+
#Fit and transform for training set
|
39 |
+
X_train=torch.from_numpy(preprocessor.fit_transform_X(X_train).values).float()
|
40 |
+
y_train=torch.from_numpy(preprocessor.fit_transform_y(y_train)).float()
|
41 |
+
if output_type<2:
|
42 |
+
y_train=y_train.unsqueeze(dim=-1)
|
43 |
+
else:
|
44 |
+
y_train=y_train.long()
|
45 |
+
|
46 |
+
#Transform for validation and test set
|
47 |
+
X_val=torch.from_numpy(preprocessor.transform_X(X_val).values).float()
|
48 |
+
y_val=torch.from_numpy(preprocessor.transform_y(y_val)).float()
|
49 |
+
if output_type<2:
|
50 |
+
y_val=y_val.unsqueeze(dim=-1)
|
51 |
+
else:
|
52 |
+
y_val=y_val.long()
|
53 |
+
|
54 |
+
X_test=torch.from_numpy(preprocessor.transform_X(X_test).values).float()
|
55 |
+
y_test=torch.from_numpy(preprocessor.transform_y(y_test)).float()
|
56 |
+
if output_type<2:
|
57 |
+
y_test=y_test.unsqueeze(dim=-1)
|
58 |
+
else:
|
59 |
+
y_test=y_test.long()
|
60 |
+
|
61 |
+
preprocessor.attribute_names=attribute_names
|
62 |
+
preprocessor.output_type=output_type
|
63 |
+
|
64 |
+
#Determine class no
|
65 |
+
if output_type==0:
|
66 |
+
output_dim=y_train.shape[1]
|
67 |
+
elif output_type==1:
|
68 |
+
output_dim=1
|
69 |
+
else:
|
70 |
+
output_dim=len(np.unique(y_train))
|
71 |
+
|
72 |
+
preprocessor.output_dim=output_dim
|
73 |
+
return X_train,X_val,X_test,y_train,y_val,y_test,preprocessor
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
class DataProcessor:
|
78 |
+
def __init__(self, categoricals, output_type):
|
79 |
+
self.categoricals = categoricals
|
80 |
+
self.output_type = output_type
|
81 |
+
self.label_encoders = {}
|
82 |
+
self.scaler = MinMaxScaler(feature_range=(-1, 1))
|
83 |
+
self.target_scaler = MinMaxScaler(feature_range=(-1, 1))
|
84 |
+
self.most_common_categories = {}
|
85 |
+
self.target_encoder = None # For binary and multiclass
|
86 |
+
self.unique_targets = None # To store unique targets for binary classification
|
87 |
+
self.category_details=[]
|
88 |
+
self.suggested_embeddings=None
|
89 |
+
self.encoders_for_nn={}
|
90 |
+
|
91 |
+
def fit_transform_X(self, X):
|
92 |
+
|
93 |
+
|
94 |
+
# Convert all numerical columns to float precision
|
95 |
+
X.iloc[:, ~np.array(self.categoricals)] = X.iloc[:, ~np.array(self.categoricals)].astype(float)
|
96 |
+
X.iloc[:, np.array(self.categoricals)] = X.iloc[:, np.array(self.categoricals)].astype(str)
|
97 |
+
|
98 |
+
X_transformed = X.copy()
|
99 |
+
for i, is_categorical in enumerate(self.categoricals):
|
100 |
+
if is_categorical:
|
101 |
+
encoder = LabelEncoder()
|
102 |
+
X_transformed.iloc[:, i] = encoder.fit_transform(X.iloc[:, i])
|
103 |
+
self.label_encoders[i] = encoder
|
104 |
+
self.encoders_for_nn[X_transformed.columns[i]] = dict(zip(encoder.classes_, encoder.transform(encoder.classes_)))
|
105 |
+
self.most_common_categories[i] = X.iloc[:, i].mode()[0]
|
106 |
+
self.category_details.append((i, len(encoder.classes_)))
|
107 |
+
else:
|
108 |
+
# Fill missing values with the median for numerical columns
|
109 |
+
X_transformed.iloc[:, i] = X.iloc[:, i].fillna(X.iloc[:, i].median())
|
110 |
+
|
111 |
+
# Scale numerical features
|
112 |
+
numerical_features = X_transformed.iloc[:, ~np.array(self.categoricals)]
|
113 |
+
if numerical_features.shape[-1]>0:
|
114 |
+
self.scaler.fit(numerical_features)
|
115 |
+
X_transformed.iloc[:, ~np.array(self.categoricals)] = self.scaler.transform(numerical_features)
|
116 |
+
self.suggested_embeddings=[max(2, int(np.log2(x[1]))) for x in self.category_details]
|
117 |
+
|
118 |
+
return X_transformed.astype(float)
|
119 |
+
|
120 |
+
def transform_X(self, X):
|
121 |
+
X.iloc[:, np.array(self.categoricals)] = X.iloc[:, np.array(self.categoricals)].astype(str)
|
122 |
+
X_transformed = X.copy()
|
123 |
+
for i, is_categorical in enumerate(self.categoricals):
|
124 |
+
if is_categorical:
|
125 |
+
encoder = self.label_encoders[i]
|
126 |
+
# Transform categories, replace unseen with most common category
|
127 |
+
X_transformed.iloc[:, i] = X.iloc[:, i].map(lambda x: x if x in encoder.classes_ else self.most_common_categories[i])
|
128 |
+
X_transformed.iloc[:, i] = encoder.transform(X_transformed.iloc[:, i])
|
129 |
+
else:
|
130 |
+
X_transformed.iloc[:, i] = X.iloc[:, i].fillna(X.iloc[:, i].mean())
|
131 |
+
|
132 |
+
# Scale numerical features
|
133 |
+
numerical_features = X_transformed.iloc[:, ~np.array(self.categoricals)]
|
134 |
+
if numerical_features.shape[-1]>0:
|
135 |
+
X_transformed.iloc[:, ~np.array(self.categoricals)] = self.scaler.transform(numerical_features)
|
136 |
+
|
137 |
+
return X_transformed.astype(float)
|
138 |
+
|
139 |
+
|
140 |
+
def inverse_transform_X(self, sample):
|
141 |
+
#inverse transform from pytorch tensor
|
142 |
+
sample=sample.detach().numpy()
|
143 |
+
sample_inverse_transformed = pd.DataFrame(sample.copy())
|
144 |
+
|
145 |
+
#Handle numerical features
|
146 |
+
numerical_features_indices = np.where(~np.array(self.categoricals))[0]
|
147 |
+
if len(numerical_features_indices)>0:
|
148 |
+
sample_inverse_transformed.iloc[:,numerical_features_indices] = self.scaler.inverse_transform(sample[:,numerical_features_indices])
|
149 |
+
|
150 |
+
|
151 |
+
for i, is_categorical in enumerate(self.categoricals):
|
152 |
+
if is_categorical:
|
153 |
+
encoder = self.label_encoders[i]
|
154 |
+
sample_inverse_transformed.iloc[:, i] = encoder.inverse_transform(sample[:, i].astype('int'))
|
155 |
+
sample_inverse_transformed.columns = self.attribute_names
|
156 |
+
return sample_inverse_transformed
|
157 |
+
|
158 |
+
|
159 |
+
def fit_transform_y(self, y):
|
160 |
+
if self.output_type == 0: # Regression
|
161 |
+
y_transformed = self.target_scaler.fit_transform(y.values.reshape(-1, 1)).flatten()
|
162 |
+
elif self.output_type == 1: # Binary classification
|
163 |
+
self.unique_targets = y.unique()
|
164 |
+
mapping = {category: idx for idx, category in enumerate(self.unique_targets)}
|
165 |
+
y_transformed = y.map(mapping).astype(int).values
|
166 |
+
elif self.output_type == 2: # Multiclass classification
|
167 |
+
self.target_encoder = LabelEncoder()
|
168 |
+
y_transformed = self.target_encoder.fit_transform(y)
|
169 |
+
else:
|
170 |
+
raise ValueError("Invalid output type")
|
171 |
+
return y_transformed
|
172 |
+
|
173 |
+
def transform_y(self, y):
|
174 |
+
if self.output_type == 0: # Regression
|
175 |
+
y_transformed = self.target_scaler.transform(y.values.reshape(-1, 1)).flatten()
|
176 |
+
elif self.output_type == 1: # Binary classification
|
177 |
+
mapping = {category: idx for idx, category in enumerate(self.unique_targets)}
|
178 |
+
y_transformed = y.map(mapping).astype(int).values
|
179 |
+
elif self.output_type == 2: # Multiclass classification
|
180 |
+
y_transformed = self.target_encoder.transform(y)
|
181 |
+
else:
|
182 |
+
raise ValueError("Invalid output type")
|
183 |
+
return y_transformed
|
184 |
+
|
185 |
+
def inverse_transform_y(self, nn_output):
|
186 |
+
if self.output_type == 0: # Regression
|
187 |
+
y_transformed=nn_output.squeeze().detach().numpy()
|
188 |
+
return self.target_scaler.inverse_transform(y_transformed.reshape(-1, 1)).flatten()
|
189 |
+
elif self.output_type == 1: # Binary classification
|
190 |
+
y_transformed=int(np.round(torch.sigmoid(nn_output).squeeze().detach().numpy()))
|
191 |
+
inverse_mapping = {idx: category for idx, category in enumerate(self.unique_targets)}
|
192 |
+
return inverse_mapping[y_transformed]
|
193 |
+
elif self.output_type == 2: # Multiclass classification
|
194 |
+
y_transformed=int(np.round(torch.argmax(nn_output).squeeze().detach().numpy()))
|
195 |
+
return self.target_encoder.inverse_transform([y_transformed])
|
196 |
+
else:
|
197 |
+
raise ValueError("Invalid output type")
|
198 |
+
|
DEMO.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
@author: Caglar Aytekin
|
3 |
+
contact: caglar@deepcause.ai
|
4 |
+
"""
|
5 |
+
# %% IMPORT
|
6 |
+
from LEURN import LEURN
|
7 |
+
import torch
|
8 |
+
from DATA import split_and_processing
|
9 |
+
from TRAINER import Trainer
|
10 |
+
import numpy as np
|
11 |
+
import openml
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
#DEMO FOR CREDIT SCORING DATASET: OPENML ID : 31
|
16 |
+
#MORE INFO: https://www.openml.org/search?type=data&sort=runs&id=31&status=active
|
17 |
+
#%% Set Neural Network Hyperparameters
|
18 |
+
depth=2
|
19 |
+
batch_size=1024
|
20 |
+
lr=5e-3
|
21 |
+
epochs=300
|
22 |
+
droprate=0.
|
23 |
+
output_type=1 #0: regression, 1: binary classification, 2: multi-class classification
|
24 |
+
|
25 |
+
#%% Check if CUDA is available and set the device accordingly
|
26 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
+
print("Using device:", device)
|
28 |
+
|
29 |
+
|
30 |
+
#%% Load the dataset
|
31 |
+
#Read dataset from openml
|
32 |
+
open_ml_dataset_id=1590
|
33 |
+
dataset = openml.datasets.get_dataset(open_ml_dataset_id)
|
34 |
+
X, y, categoricals, attribute_names = dataset.get_data(target=dataset.default_target_attribute)
|
35 |
+
#Alternatively load your own dataset from another source (excel,csv etc)
|
36 |
+
#Be mindful that X and y should be dataframes, categoricals is a boolean list indicating categorical features, attribute_names is a list of feature names
|
37 |
+
|
38 |
+
# %% Process data, save useful statistics
|
39 |
+
X_train,X_val,X_test,y_train,y_val,y_test,preprocessor=split_and_processing(X,y,categoricals,output_type,attribute_names)
|
40 |
+
|
41 |
+
#%% Initialize model, loss function, optimizer, and learning rate scheduler
|
42 |
+
model = LEURN(preprocessor, depth=depth,droprate=droprate).to(device)
|
43 |
+
|
44 |
+
|
45 |
+
#%%Train model
|
46 |
+
model_trainer=Trainer(model, X_train, X_val, y_train, y_val,lr=lr,batch_size=batch_size,epochs=epochs,problem_type=output_type)
|
47 |
+
model_trainer.train()
|
48 |
+
#Load best weights
|
49 |
+
model.load_state_dict(torch.load('best_model_weights.pth'))
|
50 |
+
|
51 |
+
#%%Evaluate performance
|
52 |
+
perf=model_trainer.evaluate(X_train, y_train)
|
53 |
+
perf=model_trainer.evaluate(X_test, y_test)
|
54 |
+
perf=model_trainer.evaluate(X_val, y_val)
|
55 |
+
|
56 |
+
#%%TESTS
|
57 |
+
model.eval()
|
58 |
+
|
59 |
+
#%%Check sample in original format:
|
60 |
+
print(preprocessor.inverse_transform_X(X_test[0:1]))
|
61 |
+
#%% Explain single example
|
62 |
+
Exp_df_test_sample,result,result_original_format=model.explain(X_test[0:1])
|
63 |
+
#%% Check results
|
64 |
+
print(result,result_original_format)
|
65 |
+
#%% Check explanation
|
66 |
+
print(Exp_df_test_sample)
|
67 |
+
#%% Influences
|
68 |
+
effects=model.influence_matrix()
|
69 |
+
new_list = [a for c, a in zip(categoricals, attribute_names) if c]+[a for c, a in zip(categoricals, attribute_names) if not(c)]
|
70 |
+
torch.argmax(effects,dim=1)
|
71 |
+
global_importances=model.global_importance()
|
72 |
+
#%% tests
|
73 |
+
#model output and sum of contributions should be the same
|
74 |
+
print(result,model.output,model(X_test[0:1]),Exp_df_test_sample['Contribution'].values.sum())
|
75 |
+
|
76 |
+
|
77 |
+
#%% GENERATION FROM SAME CATEGORY
|
78 |
+
generated_sample_nn_friendly, generated_sample_original_input_format,output=model.generate_from_same_category(X_test[0:1])
|
79 |
+
#%%Check sample in original format:
|
80 |
+
print(preprocessor.inverse_transform_X(X_test[0:1]))
|
81 |
+
print(generated_sample_original_input_format)
|
82 |
+
#%% Explain single example
|
83 |
+
Exp_df_generated_sample,result,result_original_format=model.explain(generated_sample_nn_friendly)
|
84 |
+
print(Exp_df_generated_sample)
|
85 |
+
print(Exp_df_test_sample.equals(Exp_df_generated_sample)) #this should be true
|
86 |
+
|
87 |
+
|
88 |
+
#%% GENERATE FROM SCRATCH
|
89 |
+
generated_sample_nn_friendly, generated_sample_original_input_format,output=model.generate()
|
90 |
+
Exp_df_generated_sample,result,result_original_format=model.explain(generated_sample_nn_friendly)
|
91 |
+
print(Exp_df_generated_sample)
|
92 |
+
print(result,result_original_format)
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
LEURN.py
ADDED
@@ -0,0 +1,695 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
@author: Caglar Aytekin
|
3 |
+
contact: caglar@deepcause.ai
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import random
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
import copy
|
11 |
+
class CustomEncodingFunction(torch.autograd.Function):
|
12 |
+
@staticmethod
|
13 |
+
def forward(ctx, x, tau,alpha):
|
14 |
+
ctx.save_for_backward(x, tau)
|
15 |
+
# Perform the tanh operation on (x + tau)
|
16 |
+
y = torch.tanh(x + tau)
|
17 |
+
# The actual forward output : binarized output
|
18 |
+
forward_output = alpha * (2 * torch.round((y + 1) / 2) - 1) + (1-alpha)*y
|
19 |
+
return forward_output
|
20 |
+
|
21 |
+
@staticmethod
|
22 |
+
def backward(ctx, grad_output):
|
23 |
+
x, tau = ctx.saved_tensors
|
24 |
+
# Use the derivative of tanh for the backward pass: 1 - tanh^2(x + tau)
|
25 |
+
grad_input = grad_output * (1 - torch.tanh(x + tau) ** 2)
|
26 |
+
return grad_input, grad_input,None # Assuming tau also requires gradient
|
27 |
+
|
28 |
+
# Wrapping the custom function in a nn.Module for easier use
|
29 |
+
class EncodingLayer(nn.Module):
|
30 |
+
def __init__(self):
|
31 |
+
super(EncodingLayer, self).__init__()
|
32 |
+
def forward(self, x, tau,alpha):
|
33 |
+
return CustomEncodingFunction.apply(x, tau,alpha)
|
34 |
+
|
35 |
+
class LEURN(nn.Module):
|
36 |
+
def __init__(self, preprocessor,depth,droprate):
|
37 |
+
"""
|
38 |
+
Initializes the model.
|
39 |
+
|
40 |
+
Parameters:
|
41 |
+
- preprocessor: A class containing useful info about the dataset
|
42 |
+
- Including: attribute names, categorical features details, suggested embedding size for each category, output type, output dimension, transformation information
|
43 |
+
- depth: Depth of the network
|
44 |
+
- droprate: dropout rate
|
45 |
+
"""
|
46 |
+
super(LEURN, self).__init__()
|
47 |
+
|
48 |
+
#Find categorical indices and category numbers for each
|
49 |
+
self.alpha=1.0
|
50 |
+
self.preprocessor=preprocessor
|
51 |
+
self.attribute_names=preprocessor.attribute_names
|
52 |
+
self.label_encoders=preprocessor.encoders_for_nn
|
53 |
+
self.categorical_indices = [info[0] for info in preprocessor.category_details]
|
54 |
+
self.num_categories = [info[1] for info in preprocessor.category_details]
|
55 |
+
|
56 |
+
#If embedding_size is integer, cast it to all categories
|
57 |
+
if isinstance(preprocessor.suggested_embeddings, int):
|
58 |
+
embedding_sizes = [preprocessor.suggested_embeddings] * len(self.categorical_indices)
|
59 |
+
else:
|
60 |
+
assert len(preprocessor.suggested_embeddings) == len(self.categorical_indices), "Length of embedding_size must match number of categorical features"
|
61 |
+
embedding_sizes = preprocessor.suggested_embeddings
|
62 |
+
|
63 |
+
self.embedding_sizes=embedding_sizes
|
64 |
+
|
65 |
+
#Embedding layers for categorical features
|
66 |
+
self.embeddings = nn.ModuleList([
|
67 |
+
nn.Embedding(num_categories, embedding_dim)
|
68 |
+
for num_categories, embedding_dim in zip(self.num_categories, embedding_sizes)
|
69 |
+
])
|
70 |
+
|
71 |
+
for embedding_now in self.embeddings:
|
72 |
+
nn.init.uniform_(embedding_now.weight, -1.0, 1.0)
|
73 |
+
|
74 |
+
self.total_embedding_size = sum(embedding_sizes) #number of categorical features for NN
|
75 |
+
self.non_cat_input_dim = len(self.attribute_names) - len(self.categorical_indices) #Number of numerical features for NN
|
76 |
+
self.nn_input_dim = self.total_embedding_size + self.non_cat_input_dim #Number of features for NN
|
77 |
+
|
78 |
+
|
79 |
+
#LAYERS
|
80 |
+
|
81 |
+
self.tau_initial = nn.Parameter(torch.zeros(1,self.nn_input_dim)) # Initial tau as a learnable parameter
|
82 |
+
self.layers = nn.ModuleList()
|
83 |
+
self.depth = depth
|
84 |
+
self.output_type=preprocessor.output_type
|
85 |
+
|
86 |
+
for d_now in range(depth):
|
87 |
+
# Each iteration adds an encoding layer followed by a dropout and then a linear layer
|
88 |
+
self.layers.append(EncodingLayer())
|
89 |
+
self.layers.append(nn.Dropout1d(droprate))
|
90 |
+
linear_layer = nn.Linear((d_now + 1) * self.nn_input_dim, self.nn_input_dim)
|
91 |
+
self._init_weights(linear_layer,d_now+1) #special layer initialization
|
92 |
+
self.layers.append(linear_layer)
|
93 |
+
|
94 |
+
|
95 |
+
# Final stage: dropout and linear layer
|
96 |
+
self.final_dropout=nn.Dropout1d(droprate)
|
97 |
+
self.final_linear = nn.Linear(depth * self.nn_input_dim, self.preprocessor.output_dim)
|
98 |
+
self._init_weights(self.final_linear, depth)
|
99 |
+
|
100 |
+
def set_alpha(self, alpha):
|
101 |
+
"""Method to update the dynamic parameter."""
|
102 |
+
self.alpha = alpha
|
103 |
+
|
104 |
+
def _init_weights(self, layer,depth_now):
|
105 |
+
# Custom initialization
|
106 |
+
# Considering the binary (-1,1) nature of the input,
|
107 |
+
# when we initialize layer in (-1/dim,1/dim) range, output is bounded at (-1,1)
|
108 |
+
# Knowing our input is roughly at (-1,1) range, this serves as good initialization for tau
|
109 |
+
|
110 |
+
if not(self.embedding_sizes==[]):
|
111 |
+
init_tensor = torch.tensor([1/size for size in self.embedding_sizes for _ in range(size)])
|
112 |
+
if init_tensor.shape[0]<self.nn_input_dim: #Means we have numericals too
|
113 |
+
init_tensor=torch.cat((init_tensor, torch.ones(self.non_cat_input_dim)), dim=0)
|
114 |
+
else:
|
115 |
+
init_tensor = torch.ones(self.non_cat_input_dim)
|
116 |
+
|
117 |
+
init_tensor=init_tensor/((depth_now+1)*torch.tensor(len(self.attribute_names)))
|
118 |
+
init_tensor=init_tensor.unsqueeze(0).repeat_interleave(repeats=layer.weight.shape[0],dim=0).repeat_interleave(repeats=depth_now,dim=1)
|
119 |
+
layer.weight.data.uniform_(-1, 1)
|
120 |
+
layer.weight=torch.nn.Parameter(layer.weight*init_tensor)
|
121 |
+
|
122 |
+
|
123 |
+
def forward(self, x):
|
124 |
+
# Defines forward function for provided input: Normalizes numericals, embeds categoricals, and gives to neural network.
|
125 |
+
|
126 |
+
|
127 |
+
# Separate categorical and numerical features for easier handling
|
128 |
+
cat_features = [x[:, i].long() for i in self.categorical_indices]
|
129 |
+
non_cat_features = [x[:, i] for i in range(x.size(1)) if i not in self.categorical_indices]
|
130 |
+
non_cat_features = torch.stack(non_cat_features, dim=1) if non_cat_features else x.new_empty(x.size(0), 0)
|
131 |
+
|
132 |
+
# Embed categoricals
|
133 |
+
embedded_features = [embedding(cat_feature) for embedding, cat_feature in zip(self.embeddings, cat_features)]
|
134 |
+
# Combine categoricals and numericals
|
135 |
+
try:
|
136 |
+
embedded_features = torch.cat(embedded_features, dim=1)
|
137 |
+
nninput = torch.cat([embedded_features, non_cat_features], dim=1)
|
138 |
+
except:
|
139 |
+
nninput=non_cat_features
|
140 |
+
|
141 |
+
self.nninput=nninput
|
142 |
+
|
143 |
+
# Forward pass neural network
|
144 |
+
output=self.forward_from_embeddings(self.nninput)
|
145 |
+
self.output=output
|
146 |
+
return output
|
147 |
+
|
148 |
+
def forward_from_embeddings(self,x):
|
149 |
+
# Forward function for normalized numericals and embedded categoricals
|
150 |
+
tau=self.tau_initial
|
151 |
+
tau=torch.repeat_interleave(tau,x.shape[0],0) #tau is 1xF, cast it for batch
|
152 |
+
# For each depth
|
153 |
+
for i in range(0, self.depth * 3, 3):
|
154 |
+
# encode, drop and find next tau
|
155 |
+
encoding_layer = self.layers[i]
|
156 |
+
dropout_layer = self.layers[i + 1]
|
157 |
+
linear_layer = self.layers[i + 2]
|
158 |
+
#encode and drop
|
159 |
+
encoded_x =dropout_layer( encoding_layer(x, tau,self.alpha))
|
160 |
+
#save encodings and thresholds
|
161 |
+
#notice that threshold is -tau, not tau since we binarize x+tau
|
162 |
+
if i==0:
|
163 |
+
encodings=encoded_x
|
164 |
+
taus=-tau
|
165 |
+
else:
|
166 |
+
encodings=torch.cat((encodings,encoded_x),dim=-1)
|
167 |
+
taus=torch.cat((taus,-tau),dim=-1)
|
168 |
+
#find next thresholds
|
169 |
+
tau = linear_layer(encodings) #not used, redundant for last layer
|
170 |
+
|
171 |
+
self.encodings=encodings
|
172 |
+
self.taus=taus
|
173 |
+
#Final layer: drop and linear
|
174 |
+
output=self.final_linear(self.final_dropout(encodings))
|
175 |
+
|
176 |
+
return output
|
177 |
+
|
178 |
+
|
179 |
+
def find_boundaries(self, x):
|
180 |
+
"""
|
181 |
+
Given input, find boundaries for numerical features and valid categories for categorical features
|
182 |
+
Can accept unnormalized and not embedded input - set embedding False
|
183 |
+
"""
|
184 |
+
# Ensure x is the correct shape [1, input_dim]
|
185 |
+
if x.ndim == 1:
|
186 |
+
x = x.unsqueeze(0) # Add batch dimension if not present
|
187 |
+
|
188 |
+
# Perform a forward pass to update self.encodings and self.taus
|
189 |
+
# to update self.taus
|
190 |
+
|
191 |
+
self(x)
|
192 |
+
|
193 |
+
# self.taus has the shape [1, depth * input_dim]
|
194 |
+
# reshape to [depth, input_dim] for easier boundary finding
|
195 |
+
taus_reshaped = self.taus.view(self.depth, self.nn_input_dim)
|
196 |
+
|
197 |
+
# embedded and normalized input
|
198 |
+
embedded_x=self.nninput
|
199 |
+
|
200 |
+
# Initialize boundaries - numericals are in (-1,1) range and categoricals are from embeddings.
|
201 |
+
# So -100,100 is safe min and max. -inf,+inf is not chosen since problematic for later sampling
|
202 |
+
upper_boundaries = torch.full((embedded_x.size(1),), 100.0)
|
203 |
+
lower_boundaries = torch.full((embedded_x.size(1),), -100.0)
|
204 |
+
|
205 |
+
# Compare each threshold in self.taus with the corresponding input value
|
206 |
+
for feature_index in range(self.nn_input_dim):
|
207 |
+
for depth_index in range(self.depth):
|
208 |
+
threshold = taus_reshaped[depth_index, feature_index]
|
209 |
+
input_value = embedded_x[0, feature_index]
|
210 |
+
|
211 |
+
# If the threshold is greater than the input value and less than the current upper boundary, update the upper boundary
|
212 |
+
if threshold > input_value and threshold < upper_boundaries[feature_index]:
|
213 |
+
upper_boundaries[feature_index] = threshold
|
214 |
+
|
215 |
+
# If the threshold is less than the input value and greater than the current lower boundary, update the lower boundary
|
216 |
+
if threshold < input_value and threshold > lower_boundaries[feature_index]:
|
217 |
+
lower_boundaries[feature_index] = threshold
|
218 |
+
|
219 |
+
# Convert boundaries to a list of tuples [(lower, upper), ...] for each feature
|
220 |
+
boundaries = list(zip(lower_boundaries.tolist(), upper_boundaries.tolist()))
|
221 |
+
|
222 |
+
|
223 |
+
self.upper_boundaries=upper_boundaries
|
224 |
+
self.lower_boundaries=lower_boundaries
|
225 |
+
|
226 |
+
|
227 |
+
return boundaries
|
228 |
+
|
229 |
+
def categories_within_boundaries(self):
|
230 |
+
"""
|
231 |
+
For each categorical feature, checks if embedding weights fall within the specified upper and lower boundaries.
|
232 |
+
Returns a dictionary with categorical feature indices as keys and lists of category indices that fall within the boundaries.
|
233 |
+
"""
|
234 |
+
categories_within_bounds = {}
|
235 |
+
emb_st=0
|
236 |
+
for cat_index, emb_layer in zip(range(len(self.categorical_indices)), self.embeddings):
|
237 |
+
# Extract upper and lower boundaries for this categorical feature
|
238 |
+
lower_bound=self.lower_boundaries[emb_st:emb_st+self.embedding_sizes[cat_index]]
|
239 |
+
upper_bound=self.upper_boundaries[emb_st:emb_st+self.embedding_sizes[cat_index]]
|
240 |
+
emb_st=emb_st+self.embedding_sizes[cat_index]
|
241 |
+
# Initialize list to hold categories that fall within boundaries
|
242 |
+
categories_within = []
|
243 |
+
|
244 |
+
# Iterate over each embedding vector in the layer
|
245 |
+
for i, weight in enumerate(emb_layer.weight):
|
246 |
+
# Check if the embedding weight falls within the boundaries
|
247 |
+
if torch.all(weight >= lower_bound) and torch.all(weight <= upper_bound):
|
248 |
+
categories_within.append(i) # Using index i as category identifier
|
249 |
+
|
250 |
+
# Store the categories that fall within the boundaries for this feature
|
251 |
+
categories_within_bounds[cat_index] = categories_within
|
252 |
+
|
253 |
+
return categories_within_bounds
|
254 |
+
|
255 |
+
def global_importance(self):
|
256 |
+
final_layer_weight=torch.clone(self.final_linear.weight).detach().numpy()
|
257 |
+
importances=np.sum(np.abs(final_layer_weight),0)
|
258 |
+
importances=importances.reshape(importances.shape[0]//self.nn_input_dim,self.nn_input_dim)
|
259 |
+
importances=np.sum(importances,0)
|
260 |
+
importances_features=[]
|
261 |
+
st=0
|
262 |
+
for i in range(len(self.attribute_names)):
|
263 |
+
try:
|
264 |
+
importances_features.append(np.sum(importances[st:st+self.embedding_sizes[i]]))
|
265 |
+
st=st+self.embedding_sizes[i]
|
266 |
+
except:
|
267 |
+
|
268 |
+
st=st+1
|
269 |
+
return np.argsort(importances_features)[::-1],np.sort(importances_features)[::-1]
|
270 |
+
|
271 |
+
def influence_matrix(self):
|
272 |
+
"""
|
273 |
+
Finds ADG from how each feature effects other's threshold via weight matrices
|
274 |
+
"""
|
275 |
+
|
276 |
+
def create_block_sum_matrix(sizes, matrix):
|
277 |
+
L = len(sizes)
|
278 |
+
# Initialize the output matrix with zeros, using PyTorch
|
279 |
+
block_sum_matrix = torch.zeros((L, L))
|
280 |
+
|
281 |
+
# Define the starting row and column indices for slicing
|
282 |
+
start_row = 0
|
283 |
+
for i, row_size in enumerate(sizes):
|
284 |
+
start_col = 0
|
285 |
+
for j, col_size in enumerate(sizes):
|
286 |
+
# Calculate the sum of the current block using PyTorch
|
287 |
+
block_sum = torch.sum(matrix[start_row:start_row+row_size, start_col:start_col+col_size])
|
288 |
+
block_sum_matrix[i, j] = block_sum
|
289 |
+
# Update the starting column index for the next block in the row
|
290 |
+
start_col += col_size
|
291 |
+
# Update the starting row index for the next block in the column
|
292 |
+
start_row += row_size
|
293 |
+
|
294 |
+
return block_sum_matrix
|
295 |
+
|
296 |
+
def add_ones_until_target(initial_list, target_sum):
|
297 |
+
# Continue adding 1s until the sum of the list equals the target sum
|
298 |
+
while sum(initial_list) < target_sum:
|
299 |
+
initial_list.append(1)
|
300 |
+
return initial_list
|
301 |
+
|
302 |
+
for i in range(0, self.depth * 3, 3):
|
303 |
+
# encode, drop and find next tau
|
304 |
+
weight_now=self.layers[i + 2].weight
|
305 |
+
weight_now_reshaped=weight_now.reshape((weight_now.shape[0], weight_now.shape[1]//self.nn_input_dim,self.nn_input_dim)) #shape: output x depth x input
|
306 |
+
if i==0:
|
307 |
+
# effects=np.sum(np.abs(weight_now_reshaped.numpy()),axis=1)/self.depth #shape: output x input
|
308 |
+
effects=torch.sum(torch.abs(weight_now_reshaped), dim=1) / self.depth
|
309 |
+
else:
|
310 |
+
effects=effects+torch.sum(torch.abs(weight_now_reshaped), dim=1) / self.depth
|
311 |
+
|
312 |
+
effects=effects.t() #shape: input x output
|
313 |
+
|
314 |
+
modified_list = add_ones_until_target(copy.deepcopy(self.embedding_sizes), effects.shape[0])
|
315 |
+
|
316 |
+
|
317 |
+
effects=create_block_sum_matrix(modified_list,effects)
|
318 |
+
|
319 |
+
return effects
|
320 |
+
|
321 |
+
|
322 |
+
def explain_without_causal_effects(self,x):
|
323 |
+
"""
|
324 |
+
Explains decisions of the neural network for input sample.
|
325 |
+
For numericals, extracts upper and lower boundaries on the sample
|
326 |
+
For categoricals displays possible categories
|
327 |
+
Also calculates contributions of each feature to final result
|
328 |
+
"""
|
329 |
+
self.find_boundaries(x) #find upper, lower boundaries for all nn inputs
|
330 |
+
|
331 |
+
#find valid categories for categorical features
|
332 |
+
valid_categories=self.categories_within_boundaries()
|
333 |
+
|
334 |
+
#numerical boundaries
|
335 |
+
upper_numerical=self.upper_boundaries[sum(self.embedding_sizes):].detach().numpy()
|
336 |
+
lower_numerical=self.lower_boundaries[sum(self.embedding_sizes):].detach().numpy()
|
337 |
+
|
338 |
+
#Find contribution from each feature in final linear layer, distribute bias evenly
|
339 |
+
contributions=self.encodings * self.final_linear.weight + self.final_linear.bias.unsqueeze(dim=-1)/self.final_linear.weight.shape[1]
|
340 |
+
contributions=contributions.detach().resize_((contributions.shape[0], contributions.shape[1]//self.nn_input_dim,self.nn_input_dim))
|
341 |
+
contributions=torch.sum(contributions,dim=1)
|
342 |
+
|
343 |
+
# Initialize an empty list to store the summed contributions
|
344 |
+
summed_contributions = []
|
345 |
+
|
346 |
+
# Initialize start index for slicing
|
347 |
+
start_idx = 0
|
348 |
+
|
349 |
+
#Sum contribution of each categorical within respective embedding
|
350 |
+
for size in self.embedding_sizes:
|
351 |
+
# Calculate end index for the current chunk
|
352 |
+
end_idx = start_idx + size
|
353 |
+
|
354 |
+
# Sum the contributions in the current chunk
|
355 |
+
chunk_sum = contributions[:, start_idx:end_idx].sum(dim=1, keepdim=True)
|
356 |
+
|
357 |
+
# Append the summed chunk to the list
|
358 |
+
summed_contributions.append(chunk_sum)
|
359 |
+
|
360 |
+
# Update the start index for the next chunk
|
361 |
+
start_idx = end_idx
|
362 |
+
|
363 |
+
# If there are remaining elements not covered by embedding_sizes, add them as is (numerical features)
|
364 |
+
if start_idx < contributions.shape[1]:
|
365 |
+
remaining = contributions[:, start_idx:]
|
366 |
+
summed_contributions.append(remaining)
|
367 |
+
|
368 |
+
# Concatenate the summed contributions back into a tensor
|
369 |
+
summed_contributions = torch.cat(summed_contributions, dim=1)
|
370 |
+
# This is to handle multi-class explanations, for binary this is 0 automatically
|
371 |
+
# Note: multi-output regression is not supported yet. This will just return largest regressed value's explanations
|
372 |
+
highest_index=torch.argmax(summed_contributions.sum(dim=1))
|
373 |
+
# This is contribution from each feature
|
374 |
+
result=summed_contributions[highest_index]
|
375 |
+
self.result=result
|
376 |
+
|
377 |
+
#Explanation and Contribution formats are in ordered format (categoricals first, numericals later)
|
378 |
+
#Bring them to original format in user input
|
379 |
+
#Combine categoricals and numericals explanations and contributions
|
380 |
+
Explanation = [None] * (len(self.categorical_indices) + len(upper_numerical))
|
381 |
+
Contribution = np.zeros((len(self.categorical_indices) + len(upper_numerical),))
|
382 |
+
|
383 |
+
# Fill in the categorical samples
|
384 |
+
for j, cat_index in enumerate(self.categorical_indices):
|
385 |
+
Explanation[cat_index] = valid_categories[j]
|
386 |
+
Contribution[cat_index] = result[j].numpy()
|
387 |
+
|
388 |
+
|
389 |
+
#INVERSE TRANSFORM PART 1-------------------------------------------------------------------------------------------
|
390 |
+
#Inverse transform upper and lower_numericals
|
391 |
+
len_num=len(upper_numerical)
|
392 |
+
if len_num>0:
|
393 |
+
upper_numerical=self.preprocessor.scaler.inverse_transform(upper_numerical.reshape(1,-1))
|
394 |
+
lower_numerical=self.preprocessor.scaler.inverse_transform(lower_numerical.reshape(1,-1))
|
395 |
+
if len_num>1:
|
396 |
+
upper_numerical=np.squeeze(upper_numerical)
|
397 |
+
lower_numerical=np.squeeze(lower_numerical)
|
398 |
+
upper_iter = iter(upper_numerical)
|
399 |
+
lower_iter = iter(lower_numerical)
|
400 |
+
|
401 |
+
|
402 |
+
cnt=0
|
403 |
+
for i in range(len(Explanation)):
|
404 |
+
if Explanation[i] is None:
|
405 |
+
#Note the denormalization here
|
406 |
+
Explanation[i] = next(lower_iter),next(upper_iter)
|
407 |
+
if len(self.categorical_indices)>0:
|
408 |
+
Contribution[i] = result[j+cnt+1].numpy()
|
409 |
+
else:
|
410 |
+
Contribution[i] = result[cnt].numpy()
|
411 |
+
cnt=cnt+1
|
412 |
+
|
413 |
+
attribute_names_list = []
|
414 |
+
revised_explanations_list = []
|
415 |
+
contributions_list = []
|
416 |
+
# Process each feature to fill lists
|
417 |
+
|
418 |
+
for idx, attr_name in enumerate(self.attribute_names):
|
419 |
+
if isinstance(Explanation[idx], list): # Categorical
|
420 |
+
#INVERSE TRANSFORM PART 2-------------------------------------------------------------------------------------------
|
421 |
+
#Inverse transform categoricals
|
422 |
+
category_names = [key for key, value in self.label_encoders[attr_name].items() if value in Explanation[idx]]
|
423 |
+
revised_explanation = " ,OR, ".join(category_names)
|
424 |
+
elif isinstance(Explanation[idx], tuple): # Numerical
|
425 |
+
revised_explanation = f"{Explanation[idx][0].item()} to {Explanation[idx][1].item()}"
|
426 |
+
else:
|
427 |
+
revised_explanation = "Unknown" #shouldn't really happen
|
428 |
+
|
429 |
+
# Append to lists
|
430 |
+
attribute_names_list.append(attr_name)
|
431 |
+
revised_explanations_list.append(revised_explanation)
|
432 |
+
contributions_list.append(Contribution[idx] if idx < len(Contribution) else None)
|
433 |
+
|
434 |
+
|
435 |
+
|
436 |
+
# Construct DataFrame
|
437 |
+
Explanation_df = pd.DataFrame({
|
438 |
+
'Name': attribute_names_list,
|
439 |
+
'Category': revised_explanations_list,
|
440 |
+
'Contribution': contributions_list
|
441 |
+
})
|
442 |
+
|
443 |
+
|
444 |
+
|
445 |
+
|
446 |
+
result=self.preprocessor.inverse_transform_y(self.output)
|
447 |
+
# Explanation_df['Result'] = [result] * len(Explanation_df)
|
448 |
+
|
449 |
+
return copy.deepcopy(Explanation_df),self.output.clone(),copy.deepcopy(result),copy.deepcopy(Explanation)
|
450 |
+
|
451 |
+
def explain(self,x,include_causal_analysis=False):
|
452 |
+
"""
|
453 |
+
Fixes all features but one, sweeps that feature across its own categories, reports the average change from other categories to current one.
|
454 |
+
"""
|
455 |
+
|
456 |
+
def update_intervals(available_intervals, incoming_interval):
|
457 |
+
updated_intervals = []
|
458 |
+
for interval in available_intervals:
|
459 |
+
if incoming_interval[1] <= interval[0] or incoming_interval[0] >= interval[1]:
|
460 |
+
# The incoming interval does not overlap, keep the interval as is
|
461 |
+
updated_intervals.append(interval)
|
462 |
+
else:
|
463 |
+
# There is some overlap, possibly split the interval
|
464 |
+
if incoming_interval[0] > interval[0]:
|
465 |
+
# Add the left part that doesn't overlap
|
466 |
+
updated_intervals.append((interval[0], incoming_interval[0]))
|
467 |
+
if incoming_interval[1] < interval[1]:
|
468 |
+
# Add the right part that doesn't overlap
|
469 |
+
updated_intervals.append((incoming_interval[1], interval[1]))
|
470 |
+
return updated_intervals
|
471 |
+
|
472 |
+
def sample_from_intervals(available_intervals):
|
473 |
+
if not available_intervals:
|
474 |
+
return None
|
475 |
+
# Choose a random interval
|
476 |
+
chosen_interval = random.choice(available_intervals)
|
477 |
+
# Sample a random point within this interval
|
478 |
+
return random.uniform(chosen_interval[0], chosen_interval[1])
|
479 |
+
|
480 |
+
|
481 |
+
|
482 |
+
|
483 |
+
Explanation_df,output,result,Explanation=self.explain_without_causal_effects(x)
|
484 |
+
if include_causal_analysis:
|
485 |
+
# Causal analysis
|
486 |
+
causal_effect=np.zeros((x.shape[-1],))
|
487 |
+
numerical_cnt=0
|
488 |
+
for idx, attr_name in enumerate(self.attribute_names):
|
489 |
+
if isinstance(Explanation[idx], list): # Categorical
|
490 |
+
all_category_names = [value for key, value in self.label_encoders[attr_name].items()]
|
491 |
+
sweeped_category_names = [value for key, value in self.label_encoders[attr_name].items() if value in Explanation[idx]]
|
492 |
+
|
493 |
+
if list(set(all_category_names)-set(sweeped_category_names)) == []:
|
494 |
+
is_category_empty=True
|
495 |
+
else:
|
496 |
+
is_category_empty=False
|
497 |
+
|
498 |
+
cnt=0
|
499 |
+
while is_category_empty==False:
|
500 |
+
new_x=x.clone()
|
501 |
+
next_category=list(set(all_category_names)-set(sweeped_category_names))[0]
|
502 |
+
new_x[0,idx]=float(next_category)
|
503 |
+
Explanation_df_new,output_new,result_new,Explanation_new=self.explain_without_causal_effects(new_x)
|
504 |
+
sweeped_category_names = sweeped_category_names+[value for key, value in self.label_encoders[attr_name].items() if value in Explanation_new[idx]]
|
505 |
+
|
506 |
+
if list(set(all_category_names)-set(sweeped_category_names)) == []:
|
507 |
+
is_category_empty=True
|
508 |
+
else:
|
509 |
+
is_category_empty=False
|
510 |
+
|
511 |
+
causal_effect[idx]=causal_effect[idx]+(output-output_new).detach().numpy()[0,0]
|
512 |
+
cnt=cnt+1
|
513 |
+
if cnt>0:
|
514 |
+
causal_effect[idx]=causal_effect[idx]/cnt
|
515 |
+
|
516 |
+
else:
|
517 |
+
|
518 |
+
search_complete=False
|
519 |
+
# Initial available interval . we know -100,100 from initial setting up lower, upper bounds
|
520 |
+
available_intervals = [(-100, 100)]
|
521 |
+
|
522 |
+
# Example incoming intervals
|
523 |
+
#numerical boundaries
|
524 |
+
self.explain_without_causal_effects(x)
|
525 |
+
upper_numerical=self.upper_boundaries[sum(self.embedding_sizes):].detach().numpy()
|
526 |
+
lower_numerical=self.lower_boundaries[sum(self.embedding_sizes):].detach().numpy()
|
527 |
+
incoming_interval = (lower_numerical[numerical_cnt],upper_numerical[numerical_cnt])
|
528 |
+
available_intervals = update_intervals(available_intervals, incoming_interval)
|
529 |
+
cnt=0
|
530 |
+
while not(search_complete):
|
531 |
+
new_sample=sample_from_intervals(available_intervals)
|
532 |
+
new_x=x.clone()
|
533 |
+
new_x[0,idx]=new_sample
|
534 |
+
Explanation_df_new,output_new,result_new,Explanation_new=self.explain_without_causal_effects(new_x)
|
535 |
+
causal_effect[idx]=causal_effect[idx]+(output-output_new).detach().numpy()[0,0]
|
536 |
+
cnt=cnt+1
|
537 |
+
upper_numerical=self.upper_boundaries[sum(self.embedding_sizes):].detach().numpy()
|
538 |
+
lower_numerical=self.lower_boundaries[sum(self.embedding_sizes):].detach().numpy()
|
539 |
+
incoming_interval = (lower_numerical[numerical_cnt],upper_numerical[numerical_cnt])
|
540 |
+
available_intervals = update_intervals(available_intervals, incoming_interval)
|
541 |
+
if available_intervals == []:
|
542 |
+
search_complete=True
|
543 |
+
if cnt>0:
|
544 |
+
causal_effect[idx]=causal_effect[idx]/cnt
|
545 |
+
numerical_cnt=numerical_cnt+1
|
546 |
+
|
547 |
+
|
548 |
+
|
549 |
+
Explanation_df['Causal Effects'] = causal_effect
|
550 |
+
return Explanation_df,output,result
|
551 |
+
|
552 |
+
|
553 |
+
|
554 |
+
def sample_from_boundaries(self):
|
555 |
+
"""
|
556 |
+
Assumes higher and lower boundaries are already extracted (eg self.explain is run on one input already)
|
557 |
+
Samples a value for each feature within the specified upper and lower boundaries stored in the class instance.
|
558 |
+
For numericals, samples a value, for categoricals samples a category from possible categories
|
559 |
+
Returns:
|
560 |
+
- A tensor containing sampled values within the given boundaries for each feature.
|
561 |
+
"""
|
562 |
+
#First sample from categories
|
563 |
+
categories_within_bounds=self.categories_within_boundaries()
|
564 |
+
try:
|
565 |
+
sampled_indices = [random.choice(categories) for categories in categories_within_bounds.values()]
|
566 |
+
except:
|
567 |
+
categories_within_bounds=self.categories_within_boundaries()
|
568 |
+
|
569 |
+
#Then from numericals
|
570 |
+
samples = []
|
571 |
+
cnt=0
|
572 |
+
for lower, upper in zip(self.lower_boundaries[sum(self.embedding_sizes):], self.upper_boundaries[sum(self.embedding_sizes):]):
|
573 |
+
# Sample from a uniform distribution between lower and upper boundaries
|
574 |
+
sample = lower + (upper - lower) * torch.rand(1)
|
575 |
+
samples.append(sample)
|
576 |
+
cnt=cnt+1
|
577 |
+
|
578 |
+
|
579 |
+
#Combine categoricals and numericals
|
580 |
+
# Initialize an empty list to hold the combined samples
|
581 |
+
combined_samples = [None] * (len(self.categorical_indices) + len(samples))
|
582 |
+
|
583 |
+
# Fill in the categorical samples
|
584 |
+
for i, cat_index in enumerate(self.categorical_indices):
|
585 |
+
combined_samples[cat_index] = torch.tensor([sampled_indices[i]], dtype=torch.float)
|
586 |
+
|
587 |
+
# Fill in the numerical samples
|
588 |
+
num_samples_iter = iter(samples)
|
589 |
+
for i in range(len(combined_samples)):
|
590 |
+
if combined_samples[i] is None:
|
591 |
+
combined_samples[i] = next(num_samples_iter)
|
592 |
+
|
593 |
+
# Combine into a single tensor
|
594 |
+
combined_tensor = torch.cat(combined_samples, dim=-1)
|
595 |
+
return combined_tensor.unsqueeze(dim=0)
|
596 |
+
|
597 |
+
|
598 |
+
def generate(self):
|
599 |
+
"""
|
600 |
+
Generates a data sample from learned network
|
601 |
+
"""
|
602 |
+
def sample_with_tau(tau,max_bound,min_bound):
|
603 |
+
# Sample according to tau, lower and upper bounds
|
604 |
+
sampled=torch.zeros((self.nn_input_dim))
|
605 |
+
st=0
|
606 |
+
# Randomly pick from valid categories
|
607 |
+
for embedding in self.embeddings:
|
608 |
+
categories_within = []
|
609 |
+
|
610 |
+
# Iterate over each embedding vector in the layer
|
611 |
+
for i, weight in enumerate(embedding.weight):
|
612 |
+
# Check if the embedding weight falls within the boundaries
|
613 |
+
if torch.all(weight >= min_bound[st:st+embedding.weight.shape[-1]]) and torch.all(weight <= max_bound[st:st+embedding.weight.shape[-1]]):
|
614 |
+
categories_within.append(i) # Using index i as category identifier
|
615 |
+
feature_now=embedding.weight[np.random.choice(categories_within),:]
|
616 |
+
cnt=0
|
617 |
+
for j in range(st,st+embedding.weight.shape[-1]):
|
618 |
+
if feature_now[cnt]>-tau[0,j]:
|
619 |
+
sampled[j]=1.0
|
620 |
+
elif feature_now[cnt]<=-tau[0,j]:
|
621 |
+
sampled[j]=-1.0
|
622 |
+
cnt=cnt+1
|
623 |
+
st=st+embedding.weight.shape[-1]
|
624 |
+
|
625 |
+
#Randomly sample for numericals
|
626 |
+
for i in range(st,self.nn_input_dim):
|
627 |
+
if -tau[0,i]>max_bound[i]: #In this case you have to pick -1
|
628 |
+
sampled[i]=-1.0
|
629 |
+
elif -tau[0,i]<=min_bound[i]: #In this case you have to pick 1
|
630 |
+
sampled[i]=1.0
|
631 |
+
else:
|
632 |
+
sampled[i] = (torch.randint(low=0, high=2, size=(1,)) * 2 - 1).float()
|
633 |
+
return sampled
|
634 |
+
|
635 |
+
def bound_update(tau,max_bound,min_bound,sampled):
|
636 |
+
for i in range(self.nn_input_dim):
|
637 |
+
if sampled[i]>0: #means input is larger than -tau, so -tau might set a lower bound
|
638 |
+
if -tau[0,i]>min_bound[i]:
|
639 |
+
min_bound[i]=-tau[0,i]
|
640 |
+
elif sampled[i]<=0: #means input is smaller than -tau, so -tau might set an upper bound
|
641 |
+
if -tau[0,i]<max_bound[i]:
|
642 |
+
max_bound[i]=-tau[0,i]
|
643 |
+
return max_bound,min_bound
|
644 |
+
|
645 |
+
# Read first tau
|
646 |
+
tau=self.tau_initial
|
647 |
+
|
648 |
+
# Set initial maximum and minimum bounds
|
649 |
+
max_bound=torch.zeros((self.nn_input_dim))+100.0
|
650 |
+
min_bound=torch.zeros((self.nn_input_dim))-100.0
|
651 |
+
|
652 |
+
|
653 |
+
for i in range(0, self.depth * 3, 3):
|
654 |
+
encoding_layer = self.layers[i] #NOT USED HERE, WE ENCODE RANDOMLY MANUALLY
|
655 |
+
dropout_layer = self.layers[i + 1]
|
656 |
+
linear_layer = self.layers[i + 2]
|
657 |
+
#Sample with current tau
|
658 |
+
sample_now=sample_with_tau(tau,max_bound,min_bound)
|
659 |
+
#Update bounds with new sample
|
660 |
+
max_bound,min_bound=bound_update(tau,max_bound,min_bound,sample_now)
|
661 |
+
encoded_x = dropout_layer(sample_now.unsqueeze(dim=0))
|
662 |
+
if i==0:
|
663 |
+
encodings=encoded_x
|
664 |
+
taus=-tau
|
665 |
+
else:
|
666 |
+
encodings=torch.cat((encodings,encoded_x),dim=-1)
|
667 |
+
taus=torch.cat((taus,-tau),dim=-1)
|
668 |
+
|
669 |
+
tau = linear_layer(encodings) #not used for last layer
|
670 |
+
|
671 |
+
|
672 |
+
self.encodings=encodings
|
673 |
+
self.taus=taus
|
674 |
+
self.upper_boundaries=torch.clone(max_bound)
|
675 |
+
self.lower_boundaries=torch.clone(min_bound)
|
676 |
+
|
677 |
+
generated_sample=self.sample_from_boundaries()
|
678 |
+
##Check if manually found and network generated boundaries are same
|
679 |
+
# if torch.equal(self.upper_boundaries,max_bound) and torch.equal(self.lower_boundaries,min_bound):
|
680 |
+
# print(True)
|
681 |
+
|
682 |
+
self.explain_without_causal_effects(generated_sample)
|
683 |
+
generated_sample_original_format=self.preprocessor.inverse_transform_X(generated_sample)
|
684 |
+
result=self.preprocessor.inverse_transform_y(self.output)
|
685 |
+
|
686 |
+
return generated_sample,generated_sample_original_format,result
|
687 |
+
|
688 |
+
def generate_from_same_category(self,x):
|
689 |
+
self.explain_without_causal_effects(x)
|
690 |
+
generated_sample=self.sample_from_boundaries()
|
691 |
+
generated_sample_original_format=self.preprocessor.inverse_transform_X(generated_sample)
|
692 |
+
result=self.preprocessor.inverse_transform_y(self.output)
|
693 |
+
return generated_sample,generated_sample_original_format,result
|
694 |
+
|
695 |
+
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
Presentation_Product.pdf
ADDED
Binary file (648 kB). View file
|
|
Presentation_Technical.pdf
ADDED
Binary file (297 kB). View file
|
|
README.md
CHANGED
@@ -1,13 +1,27 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LEURN
|
2 |
+
Official Repository for LEURN: Learning Explainable Univariate Rules with Neural Networks
|
3 |
+
https://arxiv.org/abs/2303.14937
|
4 |
+
|
5 |
+
Detailed information about LEURN is given in the presentations.
|
6 |
+
A demo is provided for training, making local explanations and data generation in DEMO.py
|
7 |
+
|
8 |
+
NEW! Streamlit demo is now available
|
9 |
+
Just activate the environment and run the following in your command line.
|
10 |
+
streamlit run UI.py
|
11 |
+
Make sure you check the explanation video at:
|
12 |
+
https://www.linkedin.com/posts/caglaraytekin_ai-machinelearning-dataanalysis-activity-7172866316691869697-5-nB?utm_source=share&utm_medium=member_desktop
|
13 |
+
|
14 |
+
NEW! LEURN now includes Causal Effects
|
15 |
+
Thanks to its unique design, LEURN can make controlled experiments at lightning speed, discovering average causal effects.
|
16 |
+

|
17 |
+
|
18 |
+
Main difference of this implementation from the paper:
|
19 |
+
- LEURN is now much simpler and uses binarized tanh (k=1 always) with no degradation in performance.
|
20 |
+
|
21 |
+
Notes:
|
22 |
+
- For top performance, a thorough hyperparameter search as described in paper is needed.
|
23 |
+
- Human-in-the-loop continuous training is not implemented in this repository.
|
24 |
+
- Deepcause provides consultancy services to make the most out of LEURN
|
25 |
+
|
26 |
+
Contact:
|
27 |
+
caglar@deepcause.ai
|
TRAINER.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
@author: Caglar Aytekin
|
3 |
+
contact: caglar@deepcause.ai
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from torch.utils.data import DataLoader, TensorDataset
|
8 |
+
from sklearn.metrics import accuracy_score as accuracy
|
9 |
+
from sklearn.metrics import roc_auc_score
|
10 |
+
from torch.optim.lr_scheduler import StepLR
|
11 |
+
import numpy as np
|
12 |
+
import copy
|
13 |
+
class Trainer:
|
14 |
+
def __init__(self, model, X_train, X_val, y_train, y_val,lr,batch_size,epochs,problem_type,verbose=True):
|
15 |
+
self.model = model
|
16 |
+
self.optimizer = torch.optim.Adam(model.parameters(), lr=lr)
|
17 |
+
self.problem_type=problem_type
|
18 |
+
self.verbose=verbose
|
19 |
+
if self.problem_type==0:
|
20 |
+
self.criterion = nn.MSELoss()
|
21 |
+
elif self.problem_type==1:
|
22 |
+
self.criterion = nn.BCEWithLogitsLoss()
|
23 |
+
elif self.problem_type==2:
|
24 |
+
self.criterion = nn.CrossEntropyLoss()
|
25 |
+
y_train=y_train.squeeze().long()
|
26 |
+
y_val=y_val.squeeze().long()
|
27 |
+
|
28 |
+
|
29 |
+
train_dataset = TensorDataset(X_train, y_train)
|
30 |
+
val_dataset = TensorDataset(X_val, y_val)
|
31 |
+
self.train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
|
32 |
+
self.val_loader = DataLoader(dataset=val_dataset, batch_size=len(val_dataset), shuffle=False)
|
33 |
+
self.batch_size=batch_size
|
34 |
+
self.epochs=epochs
|
35 |
+
self.best_metric = float('inf') if problem_type == 0 else float('-inf')
|
36 |
+
self.scheduler = StepLR(self.optimizer, step_size=epochs//3, gamma=0.2)
|
37 |
+
|
38 |
+
def train_epoch(self):
|
39 |
+
self.model.train()
|
40 |
+
total_loss = 0
|
41 |
+
total=0
|
42 |
+
correct=0
|
43 |
+
for inputs, labels in self.train_loader:
|
44 |
+
self.optimizer.zero_grad()
|
45 |
+
outputs = self.model(inputs)
|
46 |
+
loss = self.criterion(outputs, labels)# + torch.sum(torch.abs(self.model.causal_discovery()))*1
|
47 |
+
loss.backward()
|
48 |
+
self.optimizer.step()
|
49 |
+
total_loss += loss.item()
|
50 |
+
total += len(labels.squeeze())
|
51 |
+
if self.problem_type==1:
|
52 |
+
correct += (torch.round(torch.sigmoid(outputs.data)).squeeze() == labels.squeeze()).sum().item()
|
53 |
+
elif self.problem_type==2:
|
54 |
+
correct += (torch.max(outputs.data, 1)[1] == labels.squeeze()).sum().item()
|
55 |
+
return total_loss/len(self.train_loader) , correct/total
|
56 |
+
|
57 |
+
def validate(self):
|
58 |
+
self.model.eval()
|
59 |
+
val_loss = 0
|
60 |
+
total=0
|
61 |
+
val_predictions = []
|
62 |
+
val_targets = []
|
63 |
+
with torch.no_grad():
|
64 |
+
for inputs, labels in self.val_loader:
|
65 |
+
outputs = self.model(inputs)
|
66 |
+
val_loss += self.criterion(outputs, labels).item()
|
67 |
+
total += len(labels.squeeze())
|
68 |
+
if self.problem_type==1:
|
69 |
+
val_predictions.extend(torch.sigmoid(outputs).view(-1).cpu().numpy())
|
70 |
+
elif self.problem_type==2:
|
71 |
+
val_predictions.extend(torch.max(outputs.data, 1)[1].view(-1).cpu().numpy())
|
72 |
+
val_targets.extend(labels.view(-1).cpu().numpy())
|
73 |
+
|
74 |
+
if self.problem_type==1:
|
75 |
+
val_roc_auc =roc_auc_score(val_targets, val_predictions)
|
76 |
+
val_acc = accuracy(val_targets, np.round(val_predictions))
|
77 |
+
elif self.problem_type==2:
|
78 |
+
val_acc = accuracy(val_targets,val_predictions)
|
79 |
+
val_roc_auc=0
|
80 |
+
else:
|
81 |
+
val_roc_auc=0
|
82 |
+
val_acc=0
|
83 |
+
return val_loss /len(self.val_loader), val_acc,val_roc_auc
|
84 |
+
|
85 |
+
def train(self):
|
86 |
+
for epoch in range(self.epochs):
|
87 |
+
#Increase alpha up to 1-tenth of entire epochs
|
88 |
+
alpha_now=np.minimum(1.0,float(epoch)/float(self.epochs/10))
|
89 |
+
# print(alpha_now)
|
90 |
+
self.model.set_alpha(alpha_now)
|
91 |
+
if epoch>self.epochs//10:
|
92 |
+
save_permit=True
|
93 |
+
else:
|
94 |
+
save_permit=False
|
95 |
+
tr_loss, tr_acc = self.train_epoch()
|
96 |
+
val_loss, val_acc , val_roc_auc= self.validate()
|
97 |
+
|
98 |
+
if self.problem_type == 0:
|
99 |
+
if self.verbose:
|
100 |
+
print(f'Epoch {epoch}: Train Loss {tr_loss:.4f}, Val Loss {val_loss:.4f}')
|
101 |
+
if (val_loss < self.best_metric)and(save_permit):
|
102 |
+
self.best_metric = val_loss
|
103 |
+
# Save model checkpoint
|
104 |
+
self.model.nninput=None #Delete data remaining from training
|
105 |
+
self.encodings=None
|
106 |
+
self.taus=None
|
107 |
+
# torch.save(self.model, 'best_model.pth')
|
108 |
+
# torch.save(self.model.state_dict(), 'best_model_weights.pth')
|
109 |
+
self.best_model=copy.deepcopy(self.model.state_dict())
|
110 |
+
# print("Saving model with best validation loss.")
|
111 |
+
|
112 |
+
# Problem type 1: Focus on loss, accuracy, and AUC
|
113 |
+
elif self.problem_type == 1:
|
114 |
+
if self.verbose:
|
115 |
+
print(f'Epoch {epoch}: Train Loss {tr_loss:.4f}, Train Acc {tr_acc:.4f}, Val Loss {val_loss:.4f}, Val Acc {val_acc:.4f}, Val ROC AUC {val_roc_auc:.4f}')
|
116 |
+
if (val_roc_auc > self.best_metric)and(save_permit):
|
117 |
+
self.best_metric = val_roc_auc
|
118 |
+
# Save model checkpoint
|
119 |
+
self.model.nninput=None #Delete data remaining from training
|
120 |
+
self.encodings=None
|
121 |
+
self.taus=None
|
122 |
+
# torch.save(self.model, 'best_model.pth')
|
123 |
+
# torch.save(self.model.state_dict(), 'best_model_weights.pth')
|
124 |
+
self.best_model=copy.deepcopy(self.model.state_dict())
|
125 |
+
# print("Saving model with best validation ROC AUC.")
|
126 |
+
|
127 |
+
# Problem type 2: Focus on loss and accuracy
|
128 |
+
elif self.problem_type == 2:
|
129 |
+
if self.verbose:
|
130 |
+
print(f'Epoch {epoch}: Train Loss {tr_loss:.4f}, Train Acc {tr_acc:.4f}, Val Loss {val_loss:.4f}, Val Acc {val_acc:.4f}')
|
131 |
+
if (val_acc > self.best_metric)and(save_permit):
|
132 |
+
self.best_metric = val_acc
|
133 |
+
# Save model checkpoint
|
134 |
+
self.model.nninput=None #Delete data remaining from training
|
135 |
+
self.encodings=None
|
136 |
+
self.taus=None
|
137 |
+
# torch.save(self.model, 'best_model.pth')
|
138 |
+
# torch.save(self.model.state_dict(), 'best_model_weights.pth')
|
139 |
+
self.best_model=copy.deepcopy(self.model.state_dict())
|
140 |
+
# print("Saving model with best validation accuracy.")
|
141 |
+
self.scheduler.step()
|
142 |
+
# Load best validation model
|
143 |
+
self.model.load_state_dict(self.best_model)
|
144 |
+
|
145 |
+
# self.model = torch.load('best_model.pth')
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
def evaluate(self,X_test, y_test,verbose=True):
|
150 |
+
test_loader=DataLoader(dataset=TensorDataset(X_test, y_test), batch_size=len(y_test), shuffle=True)
|
151 |
+
self.model.eval()
|
152 |
+
test_loss = 0
|
153 |
+
total=0
|
154 |
+
test_predictions = []
|
155 |
+
test_targets = []
|
156 |
+
with torch.no_grad():
|
157 |
+
for inputs, labels in test_loader:
|
158 |
+
outputs = self.model(inputs)
|
159 |
+
test_loss += self.criterion(outputs, labels).item()
|
160 |
+
total += len(labels.squeeze())
|
161 |
+
if self.problem_type==1:
|
162 |
+
test_predictions.extend(torch.sigmoid(outputs).view(-1).cpu().numpy())
|
163 |
+
elif self.problem_type==2:
|
164 |
+
test_predictions.extend(torch.max(outputs.data, 1)[1].view(-1).cpu().numpy())
|
165 |
+
test_targets.extend(labels.view(-1).cpu().numpy())
|
166 |
+
|
167 |
+
if self.problem_type==1:
|
168 |
+
test_roc_auc =roc_auc_score(test_targets, test_predictions)
|
169 |
+
test_acc = accuracy(test_targets, np.round(test_predictions))
|
170 |
+
if verbose:
|
171 |
+
print('ROC-AUC: ', test_roc_auc)
|
172 |
+
return test_roc_auc
|
173 |
+
elif self.problem_type==2:
|
174 |
+
test_acc = accuracy(test_targets,test_predictions)
|
175 |
+
test_roc_auc=0
|
176 |
+
if verbose:
|
177 |
+
print('ACC: ', test_acc)
|
178 |
+
return test_acc
|
179 |
+
else:
|
180 |
+
test_roc_auc=0
|
181 |
+
test_acc=0
|
182 |
+
if verbose:
|
183 |
+
print('MSE: ', test_loss /len(test_loader))
|
184 |
+
return test_loss /len(test_loader)
|
185 |
+
|
186 |
+
|
app.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from LEURN import LEURN
|
5 |
+
import torch
|
6 |
+
from DATA import split_and_processing
|
7 |
+
from TRAINER import Trainer
|
8 |
+
import numpy as np
|
9 |
+
import openml
|
10 |
+
|
11 |
+
# Streamlit application layout
|
12 |
+
st.title("LEURN")
|
13 |
+
|
14 |
+
# Initialize or reset session states if necessary
|
15 |
+
if 'init' not in st.session_state:
|
16 |
+
st.session_state['training_completed'] = False
|
17 |
+
st.session_state['data_chosen'] = False
|
18 |
+
st.session_state['init'] = True
|
19 |
+
st.session_state['selected_row']=False
|
20 |
+
st.session_state['explanation_made']=False
|
21 |
+
st.session_state['result']=False
|
22 |
+
|
23 |
+
|
24 |
+
# Upload csv or excel
|
25 |
+
st.subheader("File Uploader")
|
26 |
+
uploaded_file = st.file_uploader("Upload your Excel/CSV file", type=["csv", "xlsx"])
|
27 |
+
if uploaded_file is not None:
|
28 |
+
# Reading the uploaded file
|
29 |
+
df = pd.read_csv(uploaded_file) if uploaded_file.type == "text/csv" else pd.read_excel(uploaded_file)
|
30 |
+
st.write("Data Preview:")
|
31 |
+
st.write(df.head())
|
32 |
+
|
33 |
+
st.subheader("Categorical Feature and Target Selection")
|
34 |
+
# Selecting the target variable
|
35 |
+
target = st.selectbox("Select the target variable", options=df.columns)
|
36 |
+
|
37 |
+
# Define features and target
|
38 |
+
X = df.drop(target, axis=1)
|
39 |
+
y = df[target]
|
40 |
+
attribute_names = X.columns
|
41 |
+
|
42 |
+
|
43 |
+
# Select categorical variables
|
44 |
+
st.write("Select categorical variables:")
|
45 |
+
categoricals = [st.checkbox(f"{col} is categorical", key=col) for col in X.columns]
|
46 |
+
|
47 |
+
# User input for model parameters
|
48 |
+
st.subheader("Model Training Parameters")
|
49 |
+
depth = st.selectbox("Select Model Depth", options=[1, 2, 3, 4, 5], index=2)
|
50 |
+
batch_size = st.selectbox("Select Batch Size", options=[64, 128, 256, 512, 1024, 2048, 4096], index=4)
|
51 |
+
lr = st.selectbox("Select Learning Rate", options=[1e-4, 5e-4, 1e-3, 5e-3, 1e-2], index=3)
|
52 |
+
epochs = st.number_input("Enter Number of Epochs", min_value=1, max_value=1000, value=300)
|
53 |
+
droprate = st.slider("Select Dropout Rate", min_value=0.0, max_value=1.0, value=0.0, step=0.05)
|
54 |
+
output_type = st.radio("Select Output Type (0: regression, 1: binary classification, 2: multi-class classification)", options=[0, 1, 2], index=0)
|
55 |
+
|
56 |
+
if st.button("Train Neural Network"):
|
57 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
58 |
+
#Split and process
|
59 |
+
X_train, X_val, X_test, y_train, y_val, y_test, preprocessor = split_and_processing(X, y, categoricals, output_type, attribute_names)
|
60 |
+
#Initialize model
|
61 |
+
model = LEURN(preprocessor, depth=depth, droprate=droprate).to(device)
|
62 |
+
#Train model
|
63 |
+
model_trainer = Trainer(model, X_train, X_val, y_train, y_val, lr=lr, batch_size=batch_size, epochs=epochs, problem_type=output_type, verbose=False)
|
64 |
+
model_trainer.train()
|
65 |
+
#Load best model
|
66 |
+
model.load_state_dict(model_trainer.best_model)
|
67 |
+
#Get performances
|
68 |
+
perf_train = model_trainer.evaluate(X_train, y_train)
|
69 |
+
perf_val = model_trainer.evaluate(X_val, y_val)
|
70 |
+
perf_test = model_trainer.evaluate(X_test, y_test)
|
71 |
+
st.session_state['perf_train']=perf_train
|
72 |
+
st.session_state['perf_val']=perf_val
|
73 |
+
st.session_state['perf_test']=perf_test
|
74 |
+
|
75 |
+
#Save test dataset and model to explain/generate later
|
76 |
+
X_test_inverse = preprocessor.inverse_transform_X(X_test)
|
77 |
+
X_test_inverse.to_csv('test.csv',index=False)
|
78 |
+
st.session_state['training_completed'] = True
|
79 |
+
st.session_state['model'] = model # Adjusted for compatibility
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
if st.session_state['training_completed'] == True:
|
84 |
+
|
85 |
+
#Print performances
|
86 |
+
st.write("Here are performances, try different hyperparameters if not satisfied")
|
87 |
+
if output_type == 0:
|
88 |
+
st.subheader("Training Results (MSE)")
|
89 |
+
elif output_type == 1:
|
90 |
+
st.subheader("Training Results (ROC-AUC)")
|
91 |
+
else:
|
92 |
+
st.subheader("Training Results (ACC)")
|
93 |
+
|
94 |
+
st.write(f"Training Score: {st.session_state['perf_train']:.4f}")
|
95 |
+
st.write(f"Validation Score: {st.session_state['perf_val']:.4f}")
|
96 |
+
st.write(f"Test Score: {st.session_state['perf_test']:.4f}")
|
97 |
+
|
98 |
+
|
99 |
+
# File uploader for explanation
|
100 |
+
|
101 |
+
st.subheader("Explain New Inputs")
|
102 |
+
uploaded_file_to_explain = st.file_uploader("Upload your Excel/CSV file to explain. Uploaded file should not have the target variable.", type=["csv", "xlsx"])
|
103 |
+
print(uploaded_file_to_explain)
|
104 |
+
if uploaded_file_to_explain is not None:
|
105 |
+
# Reading the uploaded file
|
106 |
+
|
107 |
+
X_test_inverse = pd.read_csv(uploaded_file_to_explain) if uploaded_file_to_explain.type == "text/csv" else pd.read_excel(uploaded_file_to_explain)
|
108 |
+
|
109 |
+
# Save DataFrame
|
110 |
+
st.session_state['X_test_inverse_df'] = X_test_inverse.to_json()
|
111 |
+
st.session_state['data_chosen'] = True # Flag to indicate data is chosen
|
112 |
+
|
113 |
+
|
114 |
+
if st.session_state['data_chosen'] == True:
|
115 |
+
# Load DataFrame from session state
|
116 |
+
X_test_inverse = pd.read_json(st.session_state['X_test_inverse_df'])
|
117 |
+
|
118 |
+
# Always display the DataFrame to ensure it's visible for selection
|
119 |
+
st.write("Test DataFrame:")
|
120 |
+
st.write(X_test_inverse)
|
121 |
+
|
122 |
+
# Let users select a row, selection is dynamic and updates session state
|
123 |
+
selected_index = st.selectbox("Select a row:", options=X_test_inverse.index, key="selected_index")
|
124 |
+
|
125 |
+
selected_row = X_test_inverse.loc[[st.session_state['selected_index']]]
|
126 |
+
st.write("Selected Data for Explanation:")
|
127 |
+
st.write(selected_row)
|
128 |
+
st.session_state['selected_row'] = selected_row
|
129 |
+
|
130 |
+
#Explain selected row
|
131 |
+
if st.button("Explain"):
|
132 |
+
model=st.session_state['model']
|
133 |
+
Exp_df_test_sample,result,result_original_format=model.explain(torch.from_numpy(model.preprocessor.transform_X(st.session_state['selected_row']).values.astype('float32')),include_causal_analysis=True)
|
134 |
+
st.session_state['explanation_made']=True
|
135 |
+
st.session_state['Exp_df_test_sample']=Exp_df_test_sample
|
136 |
+
st.session_state['result_original_format']=result_original_format
|
137 |
+
st.session_state['result']=result
|
138 |
+
|
139 |
+
#Print explanations
|
140 |
+
if st.session_state['explanation_made']==True:
|
141 |
+
st.write("Explanation DataFrame:")
|
142 |
+
st.write(st.session_state['Exp_df_test_sample'])
|
143 |
+
st.write("Predicted Output: (Network format)")
|
144 |
+
st.write(st.session_state['result'].detach().numpy().astype('str'))
|
145 |
+
if output_type==1:
|
146 |
+
if np.sign(st.session_state['result'].detach().numpy())>0:
|
147 |
+
st.write("Result here is positive; this means output class below is represented by positive sign. In the explanation dataframe, positive contributions increase class likelihood")
|
148 |
+
else:
|
149 |
+
st.write("Result here is negative; this means output class below is represented by negative sign. In the explanation dataframe, negative contributions increase class likelihood")
|
150 |
+
|
151 |
+
st.write("Predicted Output: (original format)")
|
152 |
+
st.write(st.session_state['result_original_format'])
|
153 |
+
|
154 |
+
#Data generation part
|
155 |
+
st.subheader("Generate Data From Scratch")
|
156 |
+
if st.button("Generate"):
|
157 |
+
model=st.session_state['model']
|
158 |
+
generated_sample_nn_friendly, generated_sample_original_input_format,output=model.generate()
|
159 |
+
Exp_df_generated_sample,result,result_original_format=model.explain(generated_sample_nn_friendly,include_causal_analysis=True)
|
160 |
+
st.write("Explanation DataFrame:")
|
161 |
+
st.write(Exp_df_generated_sample)
|
162 |
+
st.write("Predicted Output: (Network format)")
|
163 |
+
st.write(result.detach().numpy().astype('str'))
|
164 |
+
if output_type==1:
|
165 |
+
if np.sign(result.detach().numpy())>0:
|
166 |
+
st.write("Result here is positive; this means output class below is represented by positive sign. In the explanation dataframe, positive contributions increase class likelihood")
|
167 |
+
else:
|
168 |
+
st.write("Result here is negative; this means output class below is represented by negative sign. In the explanation dataframe, negative contributions increase class likelihood")
|
169 |
+
|
170 |
+
st.write("Predicted Output: (original format)")
|
171 |
+
st.write(result_original_format)
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
pandas
|
3 |
+
openpyxl
|
4 |
+
openml
|
5 |
+
numpy
|
6 |
+
scikit-learn
|
7 |
+
streamlit==1.29.0
|