LiamKhoaLe's picture
Update garb cls to render on colors and infer 3 models together
22bb5ba
# Access: https://BinKhoaLe1812-Sall-eGarbageDetection.hf.space/ui
# ───────────────────────── app.py (Sall-e demo) ─────────────────────────
# FastAPI ▸ upload image ▸ multi-model garbage detection ▸ ADE-20K
# semantic segmentation (Water / Garbage) ▸ A* navigation ▸ H.264 video
# =======================================================================
import os, uuid, threading, shutil, time, heapq, cv2, numpy as np
from PIL import Image
import uvicorn
from fastapi import FastAPI, File, UploadFile, Request
from fastapi.responses import HTMLResponse, StreamingResponse, Response
from fastapi.staticfiles import StaticFiles
# ── Vision libs ─────────────────────────────────────────────────────────
import torch, yolov5, ffmpeg
from ultralytics import YOLO
from transformers import (
DetrImageProcessor, DetrForObjectDetection,
SegformerFeatureExtractor, SegformerForSemanticSegmentation
)
# from sklearn.neighbors import NearestNeighbors
from inference_sdk import InferenceHTTPClient
# ── Folders / files ─────────────────────────────────────────────────────
BASE = "/home/user/app"
CACHE = f"{BASE}/cache"
UPLOAD_DIR = f"{CACHE}/uploads"
OUTPUT_DIR = f"{BASE}/outputs"
MODEL_DIR = f"{BASE}/model"
SPRITE = f"{BASE}/sprite.png"
os.makedirs(UPLOAD_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(CACHE , exist_ok=True)
os.environ["TRANSFORMERS_CACHE"] = CACHE
os.environ["HF_HOME"] = CACHE
# ── Load models once ───────────────────────────────────────────────────
print("🔄 Loading models …")
# Garbage detection
model_self = YOLO(f"{MODEL_DIR}/garbage_detector.pt") # YOLOv11(l)
model_yolo5 = yolov5.load(f"{MODEL_DIR}/yolov5-detect-trash-classification.pt")
processor_detr = DetrImageProcessor.from_pretrained(f"{MODEL_DIR}/detr")
model_detr = DetrForObjectDetection.from_pretrained(f"{MODEL_DIR}/detr")
feat_extractor = SegformerFeatureExtractor.from_pretrained(
"nvidia/segformer-b4-finetuned-ade-512-512")
segformer = SegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b4-finetuned-ade-512-512")
# Animal detection
model_animal = YOLO(f"{MODEL_DIR}/yolov8n.pt") # Load COCO pre-trained YOLOv8 for animal detection
# Garbage classification
model_garbage_cls = YOLO(f"{MODEL_DIR}/garbage_cls_yolov8s.pt")
print("✅ Models ready\n")
# ── ADE-20K palette + custom mapping (verbatim) ─────────────────────────
# ADE20K palette
ade_palette = np.array([
[0, 0, 0], [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230],
[4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70],
[8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7],
[204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
[112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71],
[255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6],
[255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140],
[250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0],
[153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255],
[31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0],
[194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41],
[255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204],
[0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255],
[0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10],
[255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31],
[0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255],
[112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0],
[255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212],
[214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255],
[0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255],
[0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0],
[92, 0, 255]
], dtype=np.uint8)
if ade_palette.shape[0] < 150: # Some update require 150 class now but we only afford 146, allow offset
missing = 150 - ade_palette.shape[0]
padding = np.zeros((missing, 3), dtype=np.uint8)
ade_palette = np.vstack([ade_palette, padding])
custom_class_map = {
"Garbage": [(255, 8, 41), (235, 255, 7), (255, 5, 153), (255, 0, 102)],
"Water": [(0, 102, 200), (11, 102, 255), (31, 0, 255), (10, 0, 255), (9, 7, 230)],
"Grass / Vegetation": [(10, 255, 71), (143, 255, 140)],
"Tree / Natural Obstacle": [(4, 200, 3), (235, 12, 255), (255, 6, 82), (255, 163, 0)],
"Sand / Soil / Ground": [(80, 50, 50), (230, 230, 230)],
"Buildings / Structures": [(255, 0, 255), (184, 0, 255), (120, 120, 120), (7, 255, 224)],
"Sky / Background": [(180, 120, 120)],
"Undetecable": [(0, 0, 0)],
"Unknown Class": []
}
TOL = 30 # RGB tolerance
# Segment class [150, 5, 61] is only detectable as garbage if it's large enough
def interpret_rgb_class(decoded_img):
ambiguous_rgb = np.array([150, 5, 61])
matches = np.all(np.abs(decoded_img - ambiguous_rgb) <= TOL, axis=-1)
match_ratio = np.count_nonzero(matches) / matches.size
return "garbage" if match_ratio > 0.15 else "sand"
# Masking zones (Garbage and Water zone to be travelable)
def build_masks(seg):
"""
Returns three binary masks at (H,W):
water_mask – 1 = water
garbage_mask – 1 = semantic “Garbage” pixels
movable_mask – union of water & garbage (robot can travel here)
"""
decoded = ade_palette[seg]
water_mask = np.zeros(seg.shape, np.uint8)
garbage_mask = np.zeros_like(water_mask)
# Resolve ambiguity: (150,5,61) → Sand or Garbage?
context_label = interpret_rgb_class(decoded)
resolved_map = custom_class_map.copy()
# Dynamically re-assign the ambiguous RGB class
if context_label == "garbage":
resolved_map["Garbage"].append((150, 5, 61))
resolved_map["Sand / Soil / Ground"] = [rgb for rgb in resolved_map["Sand / Soil / Ground"] if rgb != (150, 5, 61)]
else: # Fall back as appointed to be sth else
resolved_map["Sand / Soil / Ground"].append((150, 5, 61))
resolved_map["Garbage"] = [rgb for rgb in resolved_map["Garbage"] if rgb != (150, 5, 61)]
# Append water pixels to water_mask
for rgb in custom_class_map["Water"]:
water_mask |= (np.abs(decoded - rgb).max(axis=-1) <= TOL)
# Append gb pixels to garbage_mask
for rgb in custom_class_map["Garbage"]:
garbage_mask |= (np.abs(decoded - rgb).max(axis=-1) <= TOL)
movable_mask = water_mask | garbage_mask
return water_mask, garbage_mask, movable_mask
# Garbage mask can be highlighted in red
def highlight_chunk_masks_on_frame(
frame, labels, objs,
color_uncollected=(0, 0, 128),
color_collected=(0, 128, 0),
color_unreachable=(0, 255, 255),
alpha=0.8
):
"""
Overlays semi-transparent colored regions for garbage chunks on the frame.
`objs` must have 'pos' and 'col' keys. The collection status changes the overlay color.
"""
overlay = frame.copy()
for i, obj in enumerate(objs):
x, y = obj["pos"]
lab = labels[y, x]
if lab == 0:
continue
mask = (labels == lab).astype(np.uint8)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Choose color based on status
if obj.get("unreachable"):
color = color_unreachable
elif obj["col"]:
color = color_collected
else:
color = color_uncollected # drawContours on overlay
cv2.drawContours(overlay, contours, -1, color, thickness=cv2.FILLED)
# Blend overlay with original frame using alpha
return cv2.addWeighted(overlay, alpha, frame, 1 - alpha, 0)
# Water mask to be blue
def highlight_water_mask_on_frame(frame, binary_mask, color=(255, 0, 0), alpha=0.3):
"""
Overlays semi-transparent colored mask (binary) on the frame.
"""
overlay = frame.copy()
mask = binary_mask.astype(np.uint8) * 255
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# drawContours on overlay
cv2.drawContours(overlay, contours, -1, color, thickness=cv2.FILLED)
return cv2.addWeighted(overlay, alpha, frame, 1 - alpha, 0)
# ── A* and KNN over binary water grid ─────────────────────────────────
def astar(start, goal, occ):
h = lambda a,b: abs(a[0]-b[0])+abs(a[1]-b[1])
N8 = [(-1,-1),(-1,0),(-1,1),(0,-1),(0,1),(1,-1),(1,0),(1,1)]
openq=[(0,start)]; g={start:0}; came={}
while openq:
_,cur=heapq.heappop(openq)
if cur==goal:
p=[cur]; # reconstruct
while cur in came: cur=came[cur]; p.append(cur)
return p[::-1]
for dx,dy in N8:
nx,ny=cur[0]+dx,cur[1]+dy
# out-of-bounds / blocked
if not (0<=nx<640 and 0<=ny<640) or occ[ny,nx]==0: continue
# if diagonal, ensure both orthogonals are free
if abs(dx)==1 and abs(dy)==1:
if occ[cur[1]+dy, cur[0]]==0 or occ[cur[1], cur[0]+dx]==0:
continue
ng=g[cur]+1
if (nx,ny) not in g or ng<g[(nx,ny)]:
g[(nx,ny)]=ng
f=ng+h((nx,ny),goal)
heapq.heappush(openq,(f,(nx,ny)))
came[(nx,ny)]=cur
return []
# KNN fit optimal path
def knn_path(start, targets, occ):
todo = targets[:]; path=[]
cur = tuple(start)
reachable = []; unreachable = []
while todo:
# KNN follow a Greedy approach, which may not guarantee shortest path, hence only use A*
best = None
best_len = float('inf')
best_seg = []
# Try A* to each target, find shortest actual path
for t in todo:
seg = astar(cur, tuple(t), occ)
if seg and len(seg) < best_len: # index error?
best = tuple(t)
best_len = len(seg)
best_seg = seg
if not best:
# All remaining in `todo` are unreachable
for u in todo:
print(f"⚠️ Garbage unreachable at {u}")
unreachable.append(u)
break # no more reachable targets
if path and path[-1] == best_seg[0]:
best_seg = best_seg[1:] # skip duplicate
path.extend(best_seg)
reachable.append(list(best))
cur = best
todo.remove(list(best))
return path, unreachable
# ── Robot sprite/class -──────────────────────────────────────────────────
class Robot:
def __init__(self, sprite, speed=2000): # Declare the robot's physical stats and routing (position, speed, movement, path)
img = Image.open(sprite).convert("RGBA").resize((40, 40))
self.png = np.array(img)
if self.png.shape[-1] != 4:
raise ValueError("Sprite image must have 4 channels (RGBA)")
self.png = np.array(Image.open(sprite).convert("RGBA").resize((40,40)))
self.speed = speed
self.pos = [20, 20] # Fallback spawn with body offset at top-left
def step(self, path):
while path:
dx, dy = path[0][0] - self.pos[0], path[0][1] - self.pos[1]
dist = (dx * dx + dy * dy) ** 0.5
if dist <= self.speed:
self.pos = list(path.pop(0))
else: # If valid path within
r = self.speed / dist
new_x = self.pos[0] + dx * r
new_y = self.pos[1] + dy * r
# Clip to valid region with 20px margin (for body offset)
self.pos = [
int(np.clip(new_x, 20, 640 - 20)),
int(np.clip(new_y, 20, 640 - 20))
]
# Break after one logical move to avoid overshooting
break
# ── Static-web ──────────────────────────────────────────────────────────
from fastapi.responses import JSONResponse, FileResponse
from fastapi.middleware.cors import CORSMiddleware
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
app.mount("/statics", StaticFiles(directory="statics"), name="statics")
video_ready={}
@app.get("/ui", response_class=HTMLResponse)
async def serve_index():
p = "statics/index.html"
if os.path.exists(p):
print("[STATIC] Serving index.html")
return FileResponse(p)
print("[STATIC] index.html not found")
return JSONResponse(status_code=404, content={"detail":"Not found"})
def _uid(): return uuid.uuid4().hex[:8]
# ── End-points ──────────────────────────────────────────────────────────
# User upload environment img here
@app.post("/upload/")
async def upload(file:UploadFile=File(...)):
uid=_uid(); dest=f"{UPLOAD_DIR}/{uid}_{file.filename}"
with open(dest,"wb") as bf: shutil.copyfileobj(file.file,bf)
threading.Thread(target=_pipeline, args=(uid,dest)).start()
return {"user_id":uid}
# Health check, make sure the video generator is alive and debug which video id is processed (multiple video can be processed at 1 worker)
@app.get("/check_video/{uid}")
def chk(uid:str): return {"ready":video_ready.get(uid,False)}
# Where the final video being saved
@app.get("/video/{uid}")
def stream(uid:str):
vid=f"{OUTPUT_DIR}/{uid}.mp4"
if not os.path.exists(vid): return Response(status_code=404)
return StreamingResponse(open(vid,"rb"), media_type="video/mp4")
# ─── Detect animal/wildlife ─────────────────────────────────────────────────
# Init clients
# https://universe.roboflow.com/team-hope-mmcyy/hydroquest | https://universe.roboflow.com/sky-sd2zq/bird_only-pt0bm/model/1
import base64, requests
def roboflow_infer(image_path, api_url, api_key):
with open(image_path, "rb") as image_file:
files = {"file": image_file}
res = requests.post(
f"{api_url}?api_key={api_key}&confidence=70", # Add threshold to URL
files=files
)
print(f"[Roboflow] {res.status_code} response")
try:
return res.json()
except Exception as e:
print("[Roboflow JSON decode error]", e)
return {}
# Animal detection endpoint (animal, fish, bird as target classes)
@app.post("/animal/")
async def detect_animals(file: UploadFile = File(...)):
img_id = _uid()
img_path = f"{UPLOAD_DIR}/{img_id}_{file.filename}"
with open(img_path, "wb") as f:
shutil.copyfileobj(file.file, f)
print(f"[Animal] Uploaded image: {img_path}")
# Read and prepare detection
image = cv2.imread(img_path)
detections = []
# 1. YOLOv8 local
print("[Animal] Detecting via YOLOv8…")
try:
results = model_animal(image)[0]
for box in results.boxes:
conf = box.conf[0].item()
if conf >= 0.70:
cls_id = int(box.cls[0].item())
label = model_animal.names[cls_id].lower()
if label in ["dog", "cat", "cow", "horse", "elephant", "bear", "zebra", "giraffe", "bird"]:
x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
detections.append(((x1, y1, x2, y2), f"Animal Alert {conf}"))
except Exception as e:
print("[YOLOv8 Error]", e)
# Hide on production-level
print("[API] Roboflow key:", os.getenv("ROBOFLOW_KEY", "❌ not set"))
# 2. Roboflow Fish
try:
print("[Animal] Detecting via Roboflow Fish model…")
fish_response = roboflow_infer(
img_path,
"https://detect.roboflow.com/hydroquest/1",
api_key=os.getenv("ROBOFLOW_KEY", "")
)
for pred in fish_response.get("predictions", []):
if pred["confidence"] >= 0.70:
acc = pred["confidence"]
x1 = int(pred["x"] - pred["width"] / 2)
y1 = int(pred["y"] - pred["height"] / 2)
x2 = int(pred["x"] + pred["width"] / 2)
y2 = int(pred["y"] + pred["height"] / 2)
detections.append(((x1, y1, x2, y2), f"Fish Alert {acc}"))
print("[Roboflow Fish Response]", fish_response)
except Exception as e:
print("[Roboflow Fish Error]", e)
# 3. Roboflow Bird
try:
print("[Animal] Detecting via Roboflow Bird model…")
bird_response = roboflow_infer(
img_path,
"https://detect.roboflow.com/bird_only-pt0bm/1",
api_key=os.getenv("ROBOFLOW_KEY", "")
)
for pred in bird_response.get("predictions", []):
if pred["confidence"] >= 0.70:
acc = pred["confidence"]
x1 = int(pred["x"] - pred["width"] / 2)
y1 = int(pred["y"] - pred["height"] / 2)
x2 = int(pred["x"] + pred["width"] / 2)
y2 = int(pred["y"] + pred["height"] / 2)
detections.append(((x1, y1, x2, y2), f"Bird Alert {acc}"))
print("[Roboflow Bird Response]", bird_response)
except Exception as e:
print("[Roboflow Bird Error]", e)
# Count detection
print(f"[Animal] Total detections: {len(detections)}")
# Write label
for (x1, y1, x2, y2), label in detections:
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 0, 255), 2)
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
# Write img
result_path = f"{OUTPUT_DIR}/{img_id}_animal.jpg"
cv2.imwrite(result_path, image)
return FileResponse(result_path, media_type="image/jpeg")
# Garbage classification endpoint
@app.post("/classification/")
async def classify_garbage(file: UploadFile = File(...)):
img_id = _uid()
img_path = f"{UPLOAD_DIR}/{img_id}_{file.filename}"
out_path = f"{OUTPUT_DIR}/{img_id}_classified.jpg"
# Save uploaded file
with open(img_path, "wb") as f:
shutil.copyfileobj(file.file, f)
# Read file
print(f"[Classification] Received image: {img_path}")
image = cv2.imread(img_path)
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil = Image.fromarray(rgb)
# ─── Detection from 3 models ─────────────────────────────
detections = []
# YOLOv11 (self-trained)
for r in model_self(image):
detections += [b.xyxy[0].tolist() for b in r.boxes]
# YOLOv5
r = model_yolo5(image)
if hasattr(r, 'pred') and len(r.pred) > 0:
detections += [p[:4].tolist() for p in r.pred[0]]
# DETR
with torch.no_grad():
out = model_detr(**processor_detr(images=pil, return_tensors="pt"))
results = processor_detr.post_process_object_detection(
outputs=out,
target_sizes=torch.tensor([pil.size[::-1]]),
threshold=0.5
)[0]
detections += [b.tolist() for b in results["boxes"]]
print(f"[Classification] Total detections from 3 models: {len(detections)}")
# ─── Classification & Rendering ─────────────────────────
for box in detections:
x1, y1, x2, y2 = map(int, box)
x1, x2 = max(0, min(x1, 639)), max(0, min(x2, 639))
y1, y2 = max(0, min(y1, 639)), max(0, min(y2, 639))
# Stack all crops
crop = image[y1:y2, x1:x2]
if crop.shape[0] < 10 or crop.shape[1] < 10:
continue
# Image processing
pil_crop = Image.fromarray(cv2.cvtColor(crop, cv2.COLOR_BGR2RGB))
with torch.no_grad():
pred = model_garbage_cls(pil_crop, verbose=False)[0]
class_id = int(pred.probs.top1)
class_name = model_garbage_cls.names[class_id]
conf = float(pred.probs.top1conf)
# Label format
label = f"{class_name} ({conf:.2f})"
# Dynamic color coding
if conf < 0.4:
color = (0, 0, 255) # Red
elif conf < 0.6:
color = (0, 255, 0) # Green
elif conf < 0.8:
color = (255, 255, 0) # Sky Blue
else:
color = (255, 0, 255) # Purple
# Labelling
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
cv2.putText(image, label, (x1, y1 - 6), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
# Save result
cv2.imwrite(out_path, image)
print(f"[Classification] Output saved: {out_path}")
return FileResponse(out_path, media_type="image/jpeg")
# ── Core pipeline (runs in background thread) ───────────────────────────
def _pipeline(uid,img_path):
print(f"▶️ [{uid}] processing")
bgr=cv2.resize(cv2.imread(img_path),(640,640)); rgb=cv2.cvtColor(bgr,cv2.COLOR_BGR2RGB)
pil=Image.fromarray(rgb)
# 1- Segmentation → masking each segmented zone with pytorch
with torch.no_grad():
inputs = feat_extractor(pil, return_tensors="pt")
seg_logits = segformer(**inputs).logits
# Tensor run by CPU
seg_tensor = seg_logits.argmax(1)[0].cpu()
if seg_tensor.numel() == 0:
print(f"❌ [{uid}] segmentation failed (empty tensor)")
video_ready[uid] = True
return
# Resize the tensor to 640x640
seg = cv2.resize(seg_tensor.numpy(), (640, 640), interpolation=cv2.INTER_NEAREST)
print(f"🧪 [{uid}] segmentation input shape: {inputs['pixel_values'].shape}")
water_mask, garbage_mask, movable_mask = build_masks(seg) # movable zone = water and garbage masks
# 2- Garbage detection (3 models) → keep centres on water
detections=[]
# Detect garbage chunks (from segmentation)
num_cc, labels = cv2.connectedComponents(garbage_mask.astype(np.uint8))
chunk_centres = []
for lab in range(1, num_cc):
ys, xs = np.where(labels == lab)
if xs.size == 0: # safety
continue
chunk_centres.append([int(xs.mean()), int(ys.mean())])
print(f"🧠 {len(chunk_centres)} garbage chunk detected")
# Detect garbage object by within travelable zones
for r in model_self(bgr): # YOLOv11 (self-trained)
detections += [b.xyxy[0].tolist() for b in r.boxes]
r = model_yolo5(bgr) # YOLOv5
if hasattr(r, 'pred') and len(r.pred) > 0:
detections += [p[:4].tolist() for p in r.pred[0]]
inp=processor_detr(images=pil,return_tensors="pt")
with torch.no_grad(): out=model_detr(**inp) # DETR
post = processor_detr.post_process_object_detection(
outputs=out,
target_sizes=torch.tensor([pil.size[::-1]]),
threshold=0.5
)[0]
detections += [b.tolist() for b in post["boxes"]]
# centre & mask filter (the garbage lies within travelable zone are collectable)
centres = []
for x1, y1, x2, y2 in detections: # Define IoU heuristic
'''
We conduct a 20% allowance whether the center
of the detected garbage's bbox lies within the travelable zone
which was segmented earlier to be the water and garbage zone
'''
x1, y1, x2, y2 = map(int, [x1, y1, x2, y2])
x1 = max(0, min(x1, 639)); y1 = max(0, min(y1, 639))
x2 = max(0, min(x2, 639)); y2 = max(0, min(y2, 639))
box_mask = movable_mask[y1:y2, x1:x2] # ← switch to movable_mask
if box_mask.size == 0:
continue
if np.count_nonzero(box_mask) / box_mask.size >= 0.5:
centres.append([int((x1 + x2) / 2), int((y1 + y2) / 2)])
# add chunk centres and deduplicate
centres.extend(chunk_centres)
# # Gray overlays for chunk centres that is movable - comment
# # centres = [list(c) for c in {tuple(c) for c in centres}]
# # for cx, cy in centres:
# # cv2.circle(movable_mask, (cx, cy), 3, 127, -1) # gray center dots
# # cv2.imwrite(f"{OUTPUT_DIR}/{uid}_movable_with_centres.png", movable_mask * 255)
# print(f"🧩 Saved debug movable_mask: {OUTPUT_DIR}/{uid}_movable_mask.png")
if not centres: # No garbages within travelable zone
print(f"🛑 [{uid}] no reachable garbage"); video_ready[uid]=True; return
else: # Garbage within valid travelable zone
print(f"🧠 {len(centres)} garbage objects on water selected from {len(detections)} detections")
# 3- Robot initialization, position and navigation
# find all (y,x) within water-zone
ys, xs = np.where(water_mask)
if len(ys)==0:
# no travelable zone → bail out
print(f"❌ [{uid}] no water to spawn on")
video_ready[uid] = True
return
# sort by y, then x
idx = np.lexsort((xs, ys))
spawn_y, spawn_x = int(ys[idx[0]]), int(xs[idx[0]])
# enforce 20px margin so sprite never pokes out
spawn_x = np.clip(spawn_x, 20, 640-20)
spawn_y = np.clip(spawn_y, 20, 640-20)
robot = Robot(SPRITE)
# Robot will be spawn on the closest movable mask to top-left
robot.pos = [spawn_x, spawn_y]
path, unreachable = knn_path(robot.pos, centres, movable_mask)
if unreachable:
print(f"⚠️ Unreachable garbage chunks at: {unreachable}")
# 4- Video synthesis
out_tmp=f"{OUTPUT_DIR}/{uid}_tmp.mp4"
vw=cv2.VideoWriter(out_tmp,cv2.VideoWriter_fourcc(*"mp4v"),10.0,(640,640))
objs = [{"pos": p, "col": False, "unreachable": False} for p in centres if p not in unreachable]
objs += [{"pos": p, "col": False, "unreachable": True} for p in unreachable]
bg = bgr.copy()
for _ in range(15000): # safety frames
frame=bg.copy()
# Draw garbage chunk masks in red-to-green (semi-transparent)
frame = highlight_chunk_masks_on_frame(
frame,
labels,
objs,
color_uncollected=(0, 0, 128), # 🔴
color_collected=(0, 128, 0), # 🟢
color_unreachable=(0, 255, 255) # 🟡
) # 🔴 garbage overlay
frame = highlight_water_mask_on_frame(frame, water_mask) # 🔵 water overlay
# Draw object detections as red (to green) dots
for o in objs:
color = (0, 0, 128) if not o["col"] else (0, 128, 0)
x, y = o["pos"]
cv2.circle(frame, (x, y), 6, color, -1)
# Robot displacement
robot.step(path)
sp = robot.png
sprite_h, sprite_w = sp.shape[:2]
rx, ry = robot.pos
x1, y1 = rx - sprite_w // 2, ry - sprite_h // 2
x2, y2 = x1 + sprite_w, y1 + sprite_h
# Clip boundaries to image size
x1_clip, x2_clip = max(0, x1), min(frame.shape[1], x2)
y1_clip, y2_clip = max(0, y1), min(frame.shape[0], y2)
# Adjust sprite crop accordingly
sx1, sy1 = x1_clip - x1, y1_clip - y1
sx2, sy2 = sprite_w - (x2 - x2_clip), sprite_h - (y2 - y2_clip)
sprite_crop = sp[sy1:sy2, sx1:sx2]
alpha = sprite_crop[:, :, 3] / 255.0
alpha = np.stack([alpha] * 3, axis=-1)
bgroi = frame[y1_clip:y2_clip, x1_clip:x2_clip]
blended = (alpha * sprite_crop[:, :, :3] + (1 - alpha) * bgroi).astype(np.uint8)
frame[y1_clip:y2_clip, x1_clip:x2_clip] = blended
# collection check
for o in objs:
if not o["col"] and np.hypot(o["pos"][0]-robot.pos[0], o["pos"][1]-robot.pos[1]) <= 20:
o["col"]=True
vw.write(frame)
if all(o["col"] for o in objs): break
if not path: break
vw.release()
# 5- Convert to H.264
final=f"{OUTPUT_DIR}/{uid}.mp4"
ffmpeg.input(out_tmp).output(final,vcodec="libx264",pix_fmt="yuv420p").run(overwrite_output=True,quiet=True)
os.remove(out_tmp); video_ready[uid]=True
print(f"✅ [{uid}] video ready → {final}")
# ── Run locally (HF Space ignores since built with Docker image) ────────
if __name__=="__main__":
uvicorn.run(app,host="0.0.0.0",port=7860)