File size: 29,782 Bytes
5478d4e 57328cd 5478d4e 57328cd 5478d4e 57328cd 5478d4e 1bd6599 5478d4e 1bd6599 57328cd 1bd6599 5478d4e 4b3eff9 5478d4e 40967d9 5478d4e 1974c83 5478d4e b68fc7d 264c76c b68fc7d 5478d4e b68fc7d 5478d4e 7c0fd7a 26110ee 70b6774 7c0fd7a 26110ee 70b6774 896eec6 1d88641 896eec6 7c0fd7a 57328cd 5478d4e 125e09d 142c453 5478d4e 125e09d 5478d4e 142c453 1d88641 142c453 1d88641 5478d4e 125e09d 26110ee 125e09d 26110ee 125e09d 26110ee 125e09d 26110ee 125e09d 26110ee 5478d4e 57328cd 5478d4e b92f45b 8fa31fb 5478d4e 1d88641 5478d4e 896eec6 1d88641 896eec6 1d88641 896eec6 5478d4e 57328cd 5478d4e 57328cd 5478d4e 57328cd 5478d4e 57328cd 5478d4e 57328cd 6a3e20a bc634a9 66e3d42 bc634a9 57328cd e3fe9bf 57328cd e3fe9bf 57328cd 66e3d42 57328cd bc634a9 6a3e20a bc634a9 56ce5ee 57328cd 56ce5ee 33151ff 57328cd bc634a9 6a3e20a bc634a9 56ce5ee 57328cd 56ce5ee 33151ff 57328cd bc634a9 57328cd 1bd6599 22bb5ba 1bd6599 22bb5ba 1bd6599 22bb5ba 1bd6599 22bb5ba 1bd6599 22bb5ba 1bd6599 22bb5ba 1bd6599 22bb5ba 1bd6599 22bb5ba 1bd6599 22bb5ba 1bd6599 22bb5ba 1bd6599 22bb5ba 5478d4e 7d74d1a 5478d4e 7c0fd7a 5478d4e 8e7b586 5478d4e 6b36bc1 5478d4e 142c453 5478d4e 1d88641 8e7b586 74fa88b 1d88641 5478d4e 1d88641 26110ee 5478d4e 26110ee 5478d4e 70b6774 26110ee 7c0fd7a 5478d4e 70b6774 7c0fd7a 0a28218 5478d4e 0a28218 5b0f63c 0a28218 5b0f63c 5478d4e 5b0f63c 5478d4e 57328cd 5478d4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
# Access: https://BinKhoaLe1812-Sall-eGarbageDetection.hf.space/ui
# ───────────────────────── app.py (Sall-e demo) ─────────────────────────
# FastAPI ▸ upload image ▸ multi-model garbage detection ▸ ADE-20K
# semantic segmentation (Water / Garbage) ▸ A* navigation ▸ H.264 video
# =======================================================================
import os, uuid, threading, shutil, time, heapq, cv2, numpy as np
from PIL import Image
import uvicorn
from fastapi import FastAPI, File, UploadFile, Request
from fastapi.responses import HTMLResponse, StreamingResponse, Response
from fastapi.staticfiles import StaticFiles
# ── Vision libs ─────────────────────────────────────────────────────────
import torch, yolov5, ffmpeg
from ultralytics import YOLO
from transformers import (
DetrImageProcessor, DetrForObjectDetection,
SegformerFeatureExtractor, SegformerForSemanticSegmentation
)
# from sklearn.neighbors import NearestNeighbors
from inference_sdk import InferenceHTTPClient
# ── Folders / files ─────────────────────────────────────────────────────
BASE = "/home/user/app"
CACHE = f"{BASE}/cache"
UPLOAD_DIR = f"{CACHE}/uploads"
OUTPUT_DIR = f"{BASE}/outputs"
MODEL_DIR = f"{BASE}/model"
SPRITE = f"{BASE}/sprite.png"
os.makedirs(UPLOAD_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(CACHE , exist_ok=True)
os.environ["TRANSFORMERS_CACHE"] = CACHE
os.environ["HF_HOME"] = CACHE
# ── Load models once ───────────────────────────────────────────────────
print("🔄 Loading models …")
# Garbage detection
model_self = YOLO(f"{MODEL_DIR}/garbage_detector.pt") # YOLOv11(l)
model_yolo5 = yolov5.load(f"{MODEL_DIR}/yolov5-detect-trash-classification.pt")
processor_detr = DetrImageProcessor.from_pretrained(f"{MODEL_DIR}/detr")
model_detr = DetrForObjectDetection.from_pretrained(f"{MODEL_DIR}/detr")
feat_extractor = SegformerFeatureExtractor.from_pretrained(
"nvidia/segformer-b4-finetuned-ade-512-512")
segformer = SegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b4-finetuned-ade-512-512")
# Animal detection
model_animal = YOLO(f"{MODEL_DIR}/yolov8n.pt") # Load COCO pre-trained YOLOv8 for animal detection
# Garbage classification
model_garbage_cls = YOLO(f"{MODEL_DIR}/garbage_cls_yolov8s.pt")
print("✅ Models ready\n")
# ── ADE-20K palette + custom mapping (verbatim) ─────────────────────────
# ADE20K palette
ade_palette = np.array([
[0, 0, 0], [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230],
[4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70],
[8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7],
[204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
[112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71],
[255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6],
[255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140],
[250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0],
[153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255],
[31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0],
[194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41],
[255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204],
[0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255],
[0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10],
[255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31],
[0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255],
[112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0],
[255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212],
[214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255],
[0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255],
[0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0],
[92, 0, 255]
], dtype=np.uint8)
if ade_palette.shape[0] < 150: # Some update require 150 class now but we only afford 146, allow offset
missing = 150 - ade_palette.shape[0]
padding = np.zeros((missing, 3), dtype=np.uint8)
ade_palette = np.vstack([ade_palette, padding])
custom_class_map = {
"Garbage": [(255, 8, 41), (235, 255, 7), (255, 5, 153), (255, 0, 102)],
"Water": [(0, 102, 200), (11, 102, 255), (31, 0, 255), (10, 0, 255), (9, 7, 230)],
"Grass / Vegetation": [(10, 255, 71), (143, 255, 140)],
"Tree / Natural Obstacle": [(4, 200, 3), (235, 12, 255), (255, 6, 82), (255, 163, 0)],
"Sand / Soil / Ground": [(80, 50, 50), (230, 230, 230)],
"Buildings / Structures": [(255, 0, 255), (184, 0, 255), (120, 120, 120), (7, 255, 224)],
"Sky / Background": [(180, 120, 120)],
"Undetecable": [(0, 0, 0)],
"Unknown Class": []
}
TOL = 30 # RGB tolerance
# Segment class [150, 5, 61] is only detectable as garbage if it's large enough
def interpret_rgb_class(decoded_img):
ambiguous_rgb = np.array([150, 5, 61])
matches = np.all(np.abs(decoded_img - ambiguous_rgb) <= TOL, axis=-1)
match_ratio = np.count_nonzero(matches) / matches.size
return "garbage" if match_ratio > 0.15 else "sand"
# Masking zones (Garbage and Water zone to be travelable)
def build_masks(seg):
"""
Returns three binary masks at (H,W):
water_mask – 1 = water
garbage_mask – 1 = semantic “Garbage” pixels
movable_mask – union of water & garbage (robot can travel here)
"""
decoded = ade_palette[seg]
water_mask = np.zeros(seg.shape, np.uint8)
garbage_mask = np.zeros_like(water_mask)
# Resolve ambiguity: (150,5,61) → Sand or Garbage?
context_label = interpret_rgb_class(decoded)
resolved_map = custom_class_map.copy()
# Dynamically re-assign the ambiguous RGB class
if context_label == "garbage":
resolved_map["Garbage"].append((150, 5, 61))
resolved_map["Sand / Soil / Ground"] = [rgb for rgb in resolved_map["Sand / Soil / Ground"] if rgb != (150, 5, 61)]
else: # Fall back as appointed to be sth else
resolved_map["Sand / Soil / Ground"].append((150, 5, 61))
resolved_map["Garbage"] = [rgb for rgb in resolved_map["Garbage"] if rgb != (150, 5, 61)]
# Append water pixels to water_mask
for rgb in custom_class_map["Water"]:
water_mask |= (np.abs(decoded - rgb).max(axis=-1) <= TOL)
# Append gb pixels to garbage_mask
for rgb in custom_class_map["Garbage"]:
garbage_mask |= (np.abs(decoded - rgb).max(axis=-1) <= TOL)
movable_mask = water_mask | garbage_mask
return water_mask, garbage_mask, movable_mask
# Garbage mask can be highlighted in red
def highlight_chunk_masks_on_frame(
frame, labels, objs,
color_uncollected=(0, 0, 128),
color_collected=(0, 128, 0),
color_unreachable=(0, 255, 255),
alpha=0.8
):
"""
Overlays semi-transparent colored regions for garbage chunks on the frame.
`objs` must have 'pos' and 'col' keys. The collection status changes the overlay color.
"""
overlay = frame.copy()
for i, obj in enumerate(objs):
x, y = obj["pos"]
lab = labels[y, x]
if lab == 0:
continue
mask = (labels == lab).astype(np.uint8)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Choose color based on status
if obj.get("unreachable"):
color = color_unreachable
elif obj["col"]:
color = color_collected
else:
color = color_uncollected # drawContours on overlay
cv2.drawContours(overlay, contours, -1, color, thickness=cv2.FILLED)
# Blend overlay with original frame using alpha
return cv2.addWeighted(overlay, alpha, frame, 1 - alpha, 0)
# Water mask to be blue
def highlight_water_mask_on_frame(frame, binary_mask, color=(255, 0, 0), alpha=0.3):
"""
Overlays semi-transparent colored mask (binary) on the frame.
"""
overlay = frame.copy()
mask = binary_mask.astype(np.uint8) * 255
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# drawContours on overlay
cv2.drawContours(overlay, contours, -1, color, thickness=cv2.FILLED)
return cv2.addWeighted(overlay, alpha, frame, 1 - alpha, 0)
# ── A* and KNN over binary water grid ─────────────────────────────────
def astar(start, goal, occ):
h = lambda a,b: abs(a[0]-b[0])+abs(a[1]-b[1])
N8 = [(-1,-1),(-1,0),(-1,1),(0,-1),(0,1),(1,-1),(1,0),(1,1)]
openq=[(0,start)]; g={start:0}; came={}
while openq:
_,cur=heapq.heappop(openq)
if cur==goal:
p=[cur]; # reconstruct
while cur in came: cur=came[cur]; p.append(cur)
return p[::-1]
for dx,dy in N8:
nx,ny=cur[0]+dx,cur[1]+dy
# out-of-bounds / blocked
if not (0<=nx<640 and 0<=ny<640) or occ[ny,nx]==0: continue
# if diagonal, ensure both orthogonals are free
if abs(dx)==1 and abs(dy)==1:
if occ[cur[1]+dy, cur[0]]==0 or occ[cur[1], cur[0]+dx]==0:
continue
ng=g[cur]+1
if (nx,ny) not in g or ng<g[(nx,ny)]:
g[(nx,ny)]=ng
f=ng+h((nx,ny),goal)
heapq.heappush(openq,(f,(nx,ny)))
came[(nx,ny)]=cur
return []
# KNN fit optimal path
def knn_path(start, targets, occ):
todo = targets[:]; path=[]
cur = tuple(start)
reachable = []; unreachable = []
while todo:
# KNN follow a Greedy approach, which may not guarantee shortest path, hence only use A*
best = None
best_len = float('inf')
best_seg = []
# Try A* to each target, find shortest actual path
for t in todo:
seg = astar(cur, tuple(t), occ)
if seg and len(seg) < best_len: # index error?
best = tuple(t)
best_len = len(seg)
best_seg = seg
if not best:
# All remaining in `todo` are unreachable
for u in todo:
print(f"⚠️ Garbage unreachable at {u}")
unreachable.append(u)
break # no more reachable targets
if path and path[-1] == best_seg[0]:
best_seg = best_seg[1:] # skip duplicate
path.extend(best_seg)
reachable.append(list(best))
cur = best
todo.remove(list(best))
return path, unreachable
# ── Robot sprite/class -──────────────────────────────────────────────────
class Robot:
def __init__(self, sprite, speed=2000): # Declare the robot's physical stats and routing (position, speed, movement, path)
img = Image.open(sprite).convert("RGBA").resize((40, 40))
self.png = np.array(img)
if self.png.shape[-1] != 4:
raise ValueError("Sprite image must have 4 channels (RGBA)")
self.png = np.array(Image.open(sprite).convert("RGBA").resize((40,40)))
self.speed = speed
self.pos = [20, 20] # Fallback spawn with body offset at top-left
def step(self, path):
while path:
dx, dy = path[0][0] - self.pos[0], path[0][1] - self.pos[1]
dist = (dx * dx + dy * dy) ** 0.5
if dist <= self.speed:
self.pos = list(path.pop(0))
else: # If valid path within
r = self.speed / dist
new_x = self.pos[0] + dx * r
new_y = self.pos[1] + dy * r
# Clip to valid region with 20px margin (for body offset)
self.pos = [
int(np.clip(new_x, 20, 640 - 20)),
int(np.clip(new_y, 20, 640 - 20))
]
# Break after one logical move to avoid overshooting
break
# ── Static-web ──────────────────────────────────────────────────────────
from fastapi.responses import JSONResponse, FileResponse
from fastapi.middleware.cors import CORSMiddleware
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
app.mount("/statics", StaticFiles(directory="statics"), name="statics")
video_ready={}
@app.get("/ui", response_class=HTMLResponse)
async def serve_index():
p = "statics/index.html"
if os.path.exists(p):
print("[STATIC] Serving index.html")
return FileResponse(p)
print("[STATIC] index.html not found")
return JSONResponse(status_code=404, content={"detail":"Not found"})
def _uid(): return uuid.uuid4().hex[:8]
# ── End-points ──────────────────────────────────────────────────────────
# User upload environment img here
@app.post("/upload/")
async def upload(file:UploadFile=File(...)):
uid=_uid(); dest=f"{UPLOAD_DIR}/{uid}_{file.filename}"
with open(dest,"wb") as bf: shutil.copyfileobj(file.file,bf)
threading.Thread(target=_pipeline, args=(uid,dest)).start()
return {"user_id":uid}
# Health check, make sure the video generator is alive and debug which video id is processed (multiple video can be processed at 1 worker)
@app.get("/check_video/{uid}")
def chk(uid:str): return {"ready":video_ready.get(uid,False)}
# Where the final video being saved
@app.get("/video/{uid}")
def stream(uid:str):
vid=f"{OUTPUT_DIR}/{uid}.mp4"
if not os.path.exists(vid): return Response(status_code=404)
return StreamingResponse(open(vid,"rb"), media_type="video/mp4")
# ─── Detect animal/wildlife ─────────────────────────────────────────────────
# Init clients
# https://universe.roboflow.com/team-hope-mmcyy/hydroquest | https://universe.roboflow.com/sky-sd2zq/bird_only-pt0bm/model/1
import base64, requests
def roboflow_infer(image_path, api_url, api_key):
with open(image_path, "rb") as image_file:
files = {"file": image_file}
res = requests.post(
f"{api_url}?api_key={api_key}&confidence=70", # Add threshold to URL
files=files
)
print(f"[Roboflow] {res.status_code} response")
try:
return res.json()
except Exception as e:
print("[Roboflow JSON decode error]", e)
return {}
# Animal detection endpoint (animal, fish, bird as target classes)
@app.post("/animal/")
async def detect_animals(file: UploadFile = File(...)):
img_id = _uid()
img_path = f"{UPLOAD_DIR}/{img_id}_{file.filename}"
with open(img_path, "wb") as f:
shutil.copyfileobj(file.file, f)
print(f"[Animal] Uploaded image: {img_path}")
# Read and prepare detection
image = cv2.imread(img_path)
detections = []
# 1. YOLOv8 local
print("[Animal] Detecting via YOLOv8…")
try:
results = model_animal(image)[0]
for box in results.boxes:
conf = box.conf[0].item()
if conf >= 0.70:
cls_id = int(box.cls[0].item())
label = model_animal.names[cls_id].lower()
if label in ["dog", "cat", "cow", "horse", "elephant", "bear", "zebra", "giraffe", "bird"]:
x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
detections.append(((x1, y1, x2, y2), f"Animal Alert {conf}"))
except Exception as e:
print("[YOLOv8 Error]", e)
# Hide on production-level
print("[API] Roboflow key:", os.getenv("ROBOFLOW_KEY", "❌ not set"))
# 2. Roboflow Fish
try:
print("[Animal] Detecting via Roboflow Fish model…")
fish_response = roboflow_infer(
img_path,
"https://detect.roboflow.com/hydroquest/1",
api_key=os.getenv("ROBOFLOW_KEY", "")
)
for pred in fish_response.get("predictions", []):
if pred["confidence"] >= 0.70:
acc = pred["confidence"]
x1 = int(pred["x"] - pred["width"] / 2)
y1 = int(pred["y"] - pred["height"] / 2)
x2 = int(pred["x"] + pred["width"] / 2)
y2 = int(pred["y"] + pred["height"] / 2)
detections.append(((x1, y1, x2, y2), f"Fish Alert {acc}"))
print("[Roboflow Fish Response]", fish_response)
except Exception as e:
print("[Roboflow Fish Error]", e)
# 3. Roboflow Bird
try:
print("[Animal] Detecting via Roboflow Bird model…")
bird_response = roboflow_infer(
img_path,
"https://detect.roboflow.com/bird_only-pt0bm/1",
api_key=os.getenv("ROBOFLOW_KEY", "")
)
for pred in bird_response.get("predictions", []):
if pred["confidence"] >= 0.70:
acc = pred["confidence"]
x1 = int(pred["x"] - pred["width"] / 2)
y1 = int(pred["y"] - pred["height"] / 2)
x2 = int(pred["x"] + pred["width"] / 2)
y2 = int(pred["y"] + pred["height"] / 2)
detections.append(((x1, y1, x2, y2), f"Bird Alert {acc}"))
print("[Roboflow Bird Response]", bird_response)
except Exception as e:
print("[Roboflow Bird Error]", e)
# Count detection
print(f"[Animal] Total detections: {len(detections)}")
# Write label
for (x1, y1, x2, y2), label in detections:
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 0, 255), 2)
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
# Write img
result_path = f"{OUTPUT_DIR}/{img_id}_animal.jpg"
cv2.imwrite(result_path, image)
return FileResponse(result_path, media_type="image/jpeg")
# Garbage classification endpoint
@app.post("/classification/")
async def classify_garbage(file: UploadFile = File(...)):
img_id = _uid()
img_path = f"{UPLOAD_DIR}/{img_id}_{file.filename}"
out_path = f"{OUTPUT_DIR}/{img_id}_classified.jpg"
# Save uploaded file
with open(img_path, "wb") as f:
shutil.copyfileobj(file.file, f)
# Read file
print(f"[Classification] Received image: {img_path}")
image = cv2.imread(img_path)
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil = Image.fromarray(rgb)
# ─── Detection from 3 models ─────────────────────────────
detections = []
# YOLOv11 (self-trained)
for r in model_self(image):
detections += [b.xyxy[0].tolist() for b in r.boxes]
# YOLOv5
r = model_yolo5(image)
if hasattr(r, 'pred') and len(r.pred) > 0:
detections += [p[:4].tolist() for p in r.pred[0]]
# DETR
with torch.no_grad():
out = model_detr(**processor_detr(images=pil, return_tensors="pt"))
results = processor_detr.post_process_object_detection(
outputs=out,
target_sizes=torch.tensor([pil.size[::-1]]),
threshold=0.5
)[0]
detections += [b.tolist() for b in results["boxes"]]
print(f"[Classification] Total detections from 3 models: {len(detections)}")
# ─── Classification & Rendering ─────────────────────────
for box in detections:
x1, y1, x2, y2 = map(int, box)
x1, x2 = max(0, min(x1, 639)), max(0, min(x2, 639))
y1, y2 = max(0, min(y1, 639)), max(0, min(y2, 639))
# Stack all crops
crop = image[y1:y2, x1:x2]
if crop.shape[0] < 10 or crop.shape[1] < 10:
continue
# Image processing
pil_crop = Image.fromarray(cv2.cvtColor(crop, cv2.COLOR_BGR2RGB))
with torch.no_grad():
pred = model_garbage_cls(pil_crop, verbose=False)[0]
class_id = int(pred.probs.top1)
class_name = model_garbage_cls.names[class_id]
conf = float(pred.probs.top1conf)
# Label format
label = f"{class_name} ({conf:.2f})"
# Dynamic color coding
if conf < 0.4:
color = (0, 0, 255) # Red
elif conf < 0.6:
color = (0, 255, 0) # Green
elif conf < 0.8:
color = (255, 255, 0) # Sky Blue
else:
color = (255, 0, 255) # Purple
# Labelling
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
cv2.putText(image, label, (x1, y1 - 6), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
# Save result
cv2.imwrite(out_path, image)
print(f"[Classification] Output saved: {out_path}")
return FileResponse(out_path, media_type="image/jpeg")
# ── Core pipeline (runs in background thread) ───────────────────────────
def _pipeline(uid,img_path):
print(f"▶️ [{uid}] processing")
bgr=cv2.resize(cv2.imread(img_path),(640,640)); rgb=cv2.cvtColor(bgr,cv2.COLOR_BGR2RGB)
pil=Image.fromarray(rgb)
# 1- Segmentation → masking each segmented zone with pytorch
with torch.no_grad():
inputs = feat_extractor(pil, return_tensors="pt")
seg_logits = segformer(**inputs).logits
# Tensor run by CPU
seg_tensor = seg_logits.argmax(1)[0].cpu()
if seg_tensor.numel() == 0:
print(f"❌ [{uid}] segmentation failed (empty tensor)")
video_ready[uid] = True
return
# Resize the tensor to 640x640
seg = cv2.resize(seg_tensor.numpy(), (640, 640), interpolation=cv2.INTER_NEAREST)
print(f"🧪 [{uid}] segmentation input shape: {inputs['pixel_values'].shape}")
water_mask, garbage_mask, movable_mask = build_masks(seg) # movable zone = water and garbage masks
# 2- Garbage detection (3 models) → keep centres on water
detections=[]
# Detect garbage chunks (from segmentation)
num_cc, labels = cv2.connectedComponents(garbage_mask.astype(np.uint8))
chunk_centres = []
for lab in range(1, num_cc):
ys, xs = np.where(labels == lab)
if xs.size == 0: # safety
continue
chunk_centres.append([int(xs.mean()), int(ys.mean())])
print(f"🧠 {len(chunk_centres)} garbage chunk detected")
# Detect garbage object by within travelable zones
for r in model_self(bgr): # YOLOv11 (self-trained)
detections += [b.xyxy[0].tolist() for b in r.boxes]
r = model_yolo5(bgr) # YOLOv5
if hasattr(r, 'pred') and len(r.pred) > 0:
detections += [p[:4].tolist() for p in r.pred[0]]
inp=processor_detr(images=pil,return_tensors="pt")
with torch.no_grad(): out=model_detr(**inp) # DETR
post = processor_detr.post_process_object_detection(
outputs=out,
target_sizes=torch.tensor([pil.size[::-1]]),
threshold=0.5
)[0]
detections += [b.tolist() for b in post["boxes"]]
# centre & mask filter (the garbage lies within travelable zone are collectable)
centres = []
for x1, y1, x2, y2 in detections: # Define IoU heuristic
'''
We conduct a 20% allowance whether the center
of the detected garbage's bbox lies within the travelable zone
which was segmented earlier to be the water and garbage zone
'''
x1, y1, x2, y2 = map(int, [x1, y1, x2, y2])
x1 = max(0, min(x1, 639)); y1 = max(0, min(y1, 639))
x2 = max(0, min(x2, 639)); y2 = max(0, min(y2, 639))
box_mask = movable_mask[y1:y2, x1:x2] # ← switch to movable_mask
if box_mask.size == 0:
continue
if np.count_nonzero(box_mask) / box_mask.size >= 0.5:
centres.append([int((x1 + x2) / 2), int((y1 + y2) / 2)])
# add chunk centres and deduplicate
centres.extend(chunk_centres)
# # Gray overlays for chunk centres that is movable - comment
# # centres = [list(c) for c in {tuple(c) for c in centres}]
# # for cx, cy in centres:
# # cv2.circle(movable_mask, (cx, cy), 3, 127, -1) # gray center dots
# # cv2.imwrite(f"{OUTPUT_DIR}/{uid}_movable_with_centres.png", movable_mask * 255)
# print(f"🧩 Saved debug movable_mask: {OUTPUT_DIR}/{uid}_movable_mask.png")
if not centres: # No garbages within travelable zone
print(f"🛑 [{uid}] no reachable garbage"); video_ready[uid]=True; return
else: # Garbage within valid travelable zone
print(f"🧠 {len(centres)} garbage objects on water selected from {len(detections)} detections")
# 3- Robot initialization, position and navigation
# find all (y,x) within water-zone
ys, xs = np.where(water_mask)
if len(ys)==0:
# no travelable zone → bail out
print(f"❌ [{uid}] no water to spawn on")
video_ready[uid] = True
return
# sort by y, then x
idx = np.lexsort((xs, ys))
spawn_y, spawn_x = int(ys[idx[0]]), int(xs[idx[0]])
# enforce 20px margin so sprite never pokes out
spawn_x = np.clip(spawn_x, 20, 640-20)
spawn_y = np.clip(spawn_y, 20, 640-20)
robot = Robot(SPRITE)
# Robot will be spawn on the closest movable mask to top-left
robot.pos = [spawn_x, spawn_y]
path, unreachable = knn_path(robot.pos, centres, movable_mask)
if unreachable:
print(f"⚠️ Unreachable garbage chunks at: {unreachable}")
# 4- Video synthesis
out_tmp=f"{OUTPUT_DIR}/{uid}_tmp.mp4"
vw=cv2.VideoWriter(out_tmp,cv2.VideoWriter_fourcc(*"mp4v"),10.0,(640,640))
objs = [{"pos": p, "col": False, "unreachable": False} for p in centres if p not in unreachable]
objs += [{"pos": p, "col": False, "unreachable": True} for p in unreachable]
bg = bgr.copy()
for _ in range(15000): # safety frames
frame=bg.copy()
# Draw garbage chunk masks in red-to-green (semi-transparent)
frame = highlight_chunk_masks_on_frame(
frame,
labels,
objs,
color_uncollected=(0, 0, 128), # 🔴
color_collected=(0, 128, 0), # 🟢
color_unreachable=(0, 255, 255) # 🟡
) # 🔴 garbage overlay
frame = highlight_water_mask_on_frame(frame, water_mask) # 🔵 water overlay
# Draw object detections as red (to green) dots
for o in objs:
color = (0, 0, 128) if not o["col"] else (0, 128, 0)
x, y = o["pos"]
cv2.circle(frame, (x, y), 6, color, -1)
# Robot displacement
robot.step(path)
sp = robot.png
sprite_h, sprite_w = sp.shape[:2]
rx, ry = robot.pos
x1, y1 = rx - sprite_w // 2, ry - sprite_h // 2
x2, y2 = x1 + sprite_w, y1 + sprite_h
# Clip boundaries to image size
x1_clip, x2_clip = max(0, x1), min(frame.shape[1], x2)
y1_clip, y2_clip = max(0, y1), min(frame.shape[0], y2)
# Adjust sprite crop accordingly
sx1, sy1 = x1_clip - x1, y1_clip - y1
sx2, sy2 = sprite_w - (x2 - x2_clip), sprite_h - (y2 - y2_clip)
sprite_crop = sp[sy1:sy2, sx1:sx2]
alpha = sprite_crop[:, :, 3] / 255.0
alpha = np.stack([alpha] * 3, axis=-1)
bgroi = frame[y1_clip:y2_clip, x1_clip:x2_clip]
blended = (alpha * sprite_crop[:, :, :3] + (1 - alpha) * bgroi).astype(np.uint8)
frame[y1_clip:y2_clip, x1_clip:x2_clip] = blended
# collection check
for o in objs:
if not o["col"] and np.hypot(o["pos"][0]-robot.pos[0], o["pos"][1]-robot.pos[1]) <= 20:
o["col"]=True
vw.write(frame)
if all(o["col"] for o in objs): break
if not path: break
vw.release()
# 5- Convert to H.264
final=f"{OUTPUT_DIR}/{uid}.mp4"
ffmpeg.input(out_tmp).output(final,vcodec="libx264",pix_fmt="yuv420p").run(overwrite_output=True,quiet=True)
os.remove(out_tmp); video_ready[uid]=True
print(f"✅ [{uid}] video ready → {final}")
# ── Run locally (HF Space ignores since built with Docker image) ────────
if __name__=="__main__":
uvicorn.run(app,host="0.0.0.0",port=7860)
|