File size: 25,400 Bytes
5478d4e
 
 
 
57328cd
5478d4e
 
 
 
 
 
 
 
 
57328cd
5478d4e
 
 
 
 
 
 
57328cd
 
 
5478d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57328cd
5478d4e
 
 
 
 
 
 
 
 
 
4b3eff9
5478d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1974c83
 
5478d4e
 
 
 
 
 
 
 
 
 
b68fc7d
 
 
 
 
264c76c
b68fc7d
5478d4e
 
 
 
 
 
 
 
 
 
 
b68fc7d
 
 
 
 
 
 
 
 
 
5478d4e
 
 
 
 
 
 
 
 
7c0fd7a
1d88641
70b6774
 
 
 
 
 
 
 
 
 
7c0fd7a
 
70b6774
1d88641
70b6774
 
 
896eec6
 
 
 
 
 
 
 
1d88641
896eec6
 
7c0fd7a
57328cd
5478d4e
 
03ab354
 
 
 
 
 
 
5478d4e
03ab354
 
 
 
 
 
5478d4e
03ab354
 
 
 
 
 
 
 
 
 
1d88641
03ab354
 
 
 
 
 
 
 
5478d4e
03ab354
1d88641
5478d4e
 
 
03ab354
 
 
 
 
 
 
 
 
 
 
 
 
5478d4e
57328cd
5478d4e
 
b92f45b
8fa31fb
 
 
 
5478d4e
1d88641
 
5478d4e
896eec6
 
 
 
 
1d88641
896eec6
1d88641
 
 
 
 
 
 
896eec6
 
 
5478d4e
 
57328cd
 
5478d4e
57328cd
 
 
 
 
 
 
5478d4e
 
57328cd
 
 
 
 
 
 
5478d4e
 
57328cd
5478d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57328cd
 
6a3e20a
bc634a9
 
66e3d42
 
 
 
 
 
 
 
 
 
 
 
bc634a9
57328cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3fe9bf
57328cd
 
 
 
e3fe9bf
57328cd
 
 
66e3d42
 
 
57328cd
 
 
bc634a9
 
 
6a3e20a
bc634a9
 
56ce5ee
 
57328cd
 
 
 
56ce5ee
33151ff
57328cd
 
 
 
 
 
bc634a9
 
 
6a3e20a
bc634a9
 
56ce5ee
 
57328cd
 
 
 
56ce5ee
33151ff
57328cd
 
bc634a9
57328cd
 
 
 
 
 
 
 
 
 
 
 
5478d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d74d1a
 
 
5478d4e
 
 
 
 
 
 
 
 
 
 
 
7c0fd7a
5478d4e
 
 
 
 
 
8e7b586
5478d4e
 
7c0fd7a
5478d4e
 
 
 
 
 
 
 
 
1d88641
8e7b586
74fa88b
1d88641
 
 
 
 
 
 
 
 
 
 
5478d4e
1d88641
 
03ab354
 
 
 
5478d4e
 
 
 
 
 
 
 
70b6774
896eec6
 
7c0fd7a
5478d4e
70b6774
7c0fd7a
 
0a28218
5478d4e
0a28218
5b0f63c
 
 
 
 
 
 
 
 
 
 
 
0a28218
5b0f63c
 
 
5478d4e
 
5b0f63c
5478d4e
 
 
 
 
 
 
 
 
 
 
 
57328cd
5478d4e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
# Access: https://BinKhoaLe1812-Sall-eGarbageDetection.hf.space/ui

# ───────────────────────── app.py (Sall-e demo) ─────────────────────────
# FastAPI ▸ upload image ▸ multi-model garbage detection ▸ ADE-20K
# semantic segmentation (Water / Garbage) ▸ A* navigation ▸ H.264 video
# =======================================================================

import os, uuid, threading, shutil, time, heapq, cv2, numpy as np
from PIL import Image
import uvicorn
from fastapi import FastAPI, File, UploadFile, Request
from fastapi.responses import HTMLResponse, StreamingResponse, Response
from fastapi.staticfiles import StaticFiles


# ── Vision libs ─────────────────────────────────────────────────────────
import torch, yolov5, ffmpeg
from ultralytics import YOLO
from transformers import (
    DetrImageProcessor, DetrForObjectDetection,
    SegformerFeatureExtractor, SegformerForSemanticSegmentation
)
# from sklearn.neighbors import NearestNeighbors
from inference_sdk import InferenceHTTPClient


# ── Folders / files ─────────────────────────────────────────────────────
BASE        = "/home/user/app"
CACHE       = f"{BASE}/cache"
UPLOAD_DIR  = f"{CACHE}/uploads"
OUTPUT_DIR  = f"{BASE}/outputs"
MODEL_DIR   = f"{BASE}/model"
SPRITE      = f"{BASE}/sprite.png"

os.makedirs(UPLOAD_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(CACHE     , exist_ok=True)
os.environ["TRANSFORMERS_CACHE"] = CACHE
os.environ["HF_HOME"]           = CACHE

# ── Load models once  ───────────────────────────────────────────────────
print("🔄  Loading models …")
model_self  = YOLO(f"{MODEL_DIR}/garbage_detector.pt")                 # YOLOv11(l)
model_yolo5 = yolov5.load(f"{MODEL_DIR}/yolov5-detect-trash-classification.pt")
processor_detr = DetrImageProcessor.from_pretrained(f"{MODEL_DIR}/detr")
model_detr     = DetrForObjectDetection.from_pretrained(f"{MODEL_DIR}/detr")
feat_extractor = SegformerFeatureExtractor.from_pretrained(
                    "nvidia/segformer-b4-finetuned-ade-512-512")
segformer      = SegformerForSemanticSegmentation.from_pretrained(
                    "nvidia/segformer-b4-finetuned-ade-512-512")
model_animal = YOLO(f"{MODEL_DIR}/yolov8n.pt") # Load COCO pre-trained YOLOv8 for animal detection
print("✅  Models ready\n")

# ── ADE-20K palette + custom mapping (verbatim) ─────────────────────────
# ADE20K palette
ade_palette = np.array([
    [0, 0, 0], [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
    [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230],
    [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70],
    [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7],
    [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
    [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
    [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71],
    [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6],
    [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
    [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140],
    [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0],
    [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255],
    [31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
    [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0],
    [194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41],
    [255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
    [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204],
    [0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255],
    [0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10],
    [255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
    [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31],
    [0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255],
    [112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0],
    [255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
    [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212],
    [214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255],
    [0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255],
    [0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
    [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0],
    [92, 0, 255]
], dtype=np.uint8)

custom_class_map = {
    "Garbage":                 [(255, 8, 41), (235, 255, 7), (255, 5, 153), (255, 0, 102)],
    "Water":                   [(0, 102, 200), (11, 102, 255), (31, 0, 255), (10, 0, 255), (9, 7, 230)],
    "Grass / Vegetation":      [(10, 255, 71), (143, 255, 140)],
    "Tree / Natural Obstacle": [(4, 200, 3), (235, 12, 255), (255, 6, 82), (255, 163, 0)],
    "Sand / Soil / Ground":    [(80, 50, 50), (230, 230, 230)],
    "Buildings / Structures":  [(255, 0, 255), (184, 0, 255), (120, 120, 120), (7, 255, 224)],
    "Sky / Background":        [(180, 120, 120)],
    "Undetecable":             [(0, 0, 0)],
    "Unknown Class": []
}
TOL = 30  # RGB tolerance

# Segment class [150, 5, 61] is only detectable as garbage if it's large enough 
def interpret_rgb_class(decoded_img):
    ambiguous_rgb = np.array([150, 5, 61])
    matches = np.all(np.abs(decoded_img - ambiguous_rgb) <= TOL, axis=-1)
    match_ratio = np.count_nonzero(matches) / matches.size
    return "garbage" if match_ratio > 0.15 else "sand"

# Masking zones (Garbage and Water zone to be travelable)
def build_masks(seg):
    """
    Returns three binary masks at (H,W):
    water_mask   – 1 = water
    garbage_mask – 1 = semantic “Garbage” pixels
    movable_mask – union of water & garbage (robot can travel here)
    """
    decoded = ade_palette[seg]
    water_mask   = np.zeros(seg.shape, np.uint8)
    garbage_mask = np.zeros_like(water_mask)
    # Resolve ambiguity: (150,5,61) → Sand or Garbage?
    context_label = interpret_rgb_class(decoded)
    resolved_map = custom_class_map.copy()
    # Dynamically re-assign the ambiguous RGB class
    if context_label == "garbage":
        resolved_map["Garbage"].append((150, 5, 61))
        resolved_map["Sand / Soil / Ground"] = [rgb for rgb in resolved_map["Sand / Soil / Ground"] if rgb != (150, 5, 61)]
    else: # Fall back as appointed to be sth else
        resolved_map["Sand / Soil / Ground"].append((150, 5, 61))
        resolved_map["Garbage"] = [rgb for rgb in resolved_map["Garbage"] if rgb != (150, 5, 61)]
    # Append water pixels to water_mask
    for rgb in custom_class_map["Water"]:
        water_mask |= (np.abs(decoded - rgb).max(axis=-1) <= TOL)
    # Append gb pixels to garbage_mask
    for rgb in custom_class_map["Garbage"]:
        garbage_mask |= (np.abs(decoded - rgb).max(axis=-1) <= TOL)
    movable_mask = water_mask | garbage_mask
    return water_mask, garbage_mask, movable_mask

# Garbage mask can be highlighted in red
def highlight_chunk_masks_on_frame(frame, labels, objs, color_uncollected=(0, 0, 128), color_collected=(0, 128, 0), alpha=0.8):
    """
    Overlays semi-transparent colored regions for garbage chunks on the frame.
    `objs` must have 'pos' and 'col' keys. The collection status changes the overlay color.
    """
    overlay = frame.copy()
    for i, obj in enumerate(objs):
        x, y = obj["pos"]
        lab = labels[y, x]
        if lab == 0:
            continue
        mask = (labels == lab).astype(np.uint8)
        contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        color = color_collected if obj["col"] else color_uncollected
        # drawContours on overlay
        cv2.drawContours(overlay, contours, -1, color, thickness=cv2.FILLED)
    # Blend overlay with original frame using alpha
    return cv2.addWeighted(overlay, alpha, frame, 1 - alpha, 0)
# Water mask to be blue
def highlight_water_mask_on_frame(frame, binary_mask, color=(255, 0, 0), alpha=0.3):
    """
    Overlays semi-transparent colored mask (binary) on the frame.
    """
    overlay = frame.copy()
    mask = binary_mask.astype(np.uint8) * 255
    contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    # drawContours on overlay
    cv2.drawContours(overlay, contours, -1, color, thickness=cv2.FILLED)
    return cv2.addWeighted(overlay, alpha, frame, 1 - alpha, 0)


# ── A* and KNN over binary water grid ─────────────────────────────────
def astar(start, goal, occ):
    h = lambda a, b: abs(a[0] - b[0]) + abs(a[1] - b[1])
    N8 = [(-1,-1), (-1,0), (-1,1), (0,-1), (0,1), (1,-1), (1,0), (1,1)]
    openq = [(0, start)]
    g = {start: 0}
    came = {}
    visited = set()
    H, W = occ.shape
    while openq:
        _, cur = heapq.heappop(openq)
        if cur == goal:
            p = [cur]
            while cur in came:
                cur = came[cur]
                p.append(cur)
            return p[::-1]
        if cur in visited:
            continue
        visited.add(cur)
        for dx, dy in N8:
            nx, ny = cur[0] + dx, cur[1] + dy
            if not (0 <= nx < W and 0 <= ny < H): continue
            if occ[ny, nx] == 0: continue
            # prevent corner-cutting on diagonals
            if abs(dx) == 1 and abs(dy) == 1:
                if occ[cur[1] + dy, cur[0]] == 0 or occ[cur[1], cur[0] + dx] == 0:
                    continue
            next_node = (nx, ny)
            ng = g[cur] + 1
            if next_node not in g or ng < g[next_node]:
                g[next_node] = ng
                f = ng + h(next_node, goal)
                heapq.heappush(openq, (f, next_node))
                came[next_node] = cur
    print(f"[A*] No path from {start} to {goal}")
    return []

# KNN fit optimal path
def knn_path(start, targets, occ):
    todo = targets[:]; path=[]
    cur  = tuple(start)
    reachable = []; unreachable = []
    for t in todo:
        seg = astar(cur, tuple(t), occ)
        if seg:
            if path and path[-1] == seg[0]:
                seg = seg[1:]
            path.extend(seg)
            reachable.append(t)
            cur = tuple(t)
        else:
            unreachable.append(t)
            print(f"⚠️ Unreachable garbage at {t}")
    return path, reachable


# ── Robot sprite/class -──────────────────────────────────────────────────
class Robot:
    def __init__(self, sprite, speed=2000): # Declare the robot's physical stats and routing (position, speed, movement, path)
        img = Image.open(sprite).convert("RGBA").resize((40, 40))
        self.png = np.array(img)
        if self.png.shape[-1] != 4:
            raise ValueError("Sprite image must have 4 channels (RGBA)")
        self.png = np.array(Image.open(sprite).convert("RGBA").resize((40,40)))
        self.speed = speed
        self.pos = [20, 20]  # Fallback spawn with body offset at top-left
    def step(self, path):
        while path:
            dx, dy = path[0][0] - self.pos[0], path[0][1] - self.pos[1]
            dist = (dx * dx + dy * dy) ** 0.5
            if dist <= self.speed:
                self.pos = list(path.pop(0))
            else: # If valid path within
                r = self.speed / dist
                new_x = self.pos[0] + dx * r
                new_y = self.pos[1] + dy * r
                # Clip to valid region with 20px margin (for body offset)
                self.pos = [
                    int(np.clip(new_x, 20, 640 - 20)),
                    int(np.clip(new_y, 20, 640 - 20))
                ]
            # Break after one logical move to avoid overshooting
            break


# ── Static-web ────────────────────────────────────────────────────────── 
from fastapi.responses import JSONResponse, FileResponse
from fastapi.middleware.cors import CORSMiddleware
app = FastAPI()
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_methods=["*"],
    allow_headers=["*"],
)
app.mount("/statics", StaticFiles(directory="statics"), name="statics")
video_ready={}
@app.get("/ui", response_class=HTMLResponse)
async def serve_index():
    p = "statics/index.html"
    if os.path.exists(p):
        print("[STATIC] Serving index.html")
        return FileResponse(p)
    print("[STATIC] index.html not found")
    return JSONResponse(status_code=404, content={"detail":"Not found"})
def _uid(): return uuid.uuid4().hex[:8]


# ── End-points ──────────────────────────────────────────────────────────
# User upload environment img here
@app.post("/upload/")
async def upload(file:UploadFile=File(...)):
    uid=_uid(); dest=f"{UPLOAD_DIR}/{uid}_{file.filename}"
    with open(dest,"wb") as bf: shutil.copyfileobj(file.file,bf)
    threading.Thread(target=_pipeline, args=(uid,dest)).start()
    return {"user_id":uid}

# Health check, make sure the video generator is alive and debug which video id is processed (multiple video can be processed at 1 worker)
@app.get("/check_video/{uid}")
def chk(uid:str): return {"ready":video_ready.get(uid,False)}

# Where the final video being saved
@app.get("/video/{uid}")
def stream(uid:str):
    vid=f"{OUTPUT_DIR}/{uid}.mp4"
    if not os.path.exists(vid): return Response(status_code=404)
    return StreamingResponse(open(vid,"rb"), media_type="video/mp4")

# ─── Detect animal/wildlife ─────────────────────────────────────────────────
# Init clients
# https://universe.roboflow.com/team-hope-mmcyy/hydroquest | https://universe.roboflow.com/sky-sd2zq/bird_only-pt0bm/model/1
import base64, requests
def roboflow_infer(image_path, api_url, api_key):
    with open(image_path, "rb") as image_file:
        files = {"file": image_file}
        res = requests.post(
            f"{api_url}?api_key={api_key}&confidence=70",  # Add threshold to URL
            files=files
        )
    print(f"[Roboflow] {res.status_code} response")
    try:
        return res.json()
    except Exception as e:
        print("[Roboflow JSON decode error]", e)
        return {}

# Animal detection endpoint (animal, fish, bird as target classes)
@app.post("/animal/")
async def detect_animals(file: UploadFile = File(...)):
    img_id = _uid()
    img_path = f"{UPLOAD_DIR}/{img_id}_{file.filename}"
    with open(img_path, "wb") as f:
        shutil.copyfileobj(file.file, f)
    print(f"[Animal] Uploaded image: {img_path}")
    # Read and prepare detection
    image = cv2.imread(img_path)
    detections = []

    # 1. YOLOv8 local
    print("[Animal] Detecting via YOLOv8…")
    try:
        results = model_animal(image)[0]
        for box in results.boxes:
            conf = box.conf[0].item()
            if conf >= 0.70:
                cls_id = int(box.cls[0].item())
                label = model_animal.names[cls_id].lower()
                if label in ["dog", "cat", "cow", "horse", "elephant", "bear", "zebra", "giraffe", "bird"]:
                    x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
                    detections.append(((x1, y1, x2, y2), f"Animal Alert {conf}"))
    except Exception as e:
        print("[YOLOv8 Error]", e)

    # Hide on production-level
    print("[API] Roboflow key:", os.getenv("ROBOFLOW_KEY", "❌ not set"))

    # 2. Roboflow Fish
    try:
        print("[Animal] Detecting via Roboflow Fish model…")
        fish_response = roboflow_infer(
            img_path,
            "https://detect.roboflow.com/hydroquest/1",
            api_key=os.getenv("ROBOFLOW_KEY", "")
        )
        for pred in fish_response.get("predictions", []):
            if pred["confidence"] >= 0.70:
                acc = pred["confidence"]
                x1 = int(pred["x"] - pred["width"] / 2)
                y1 = int(pred["y"] - pred["height"] / 2)
                x2 = int(pred["x"] + pred["width"] / 2)
                y2 = int(pred["y"] + pred["height"] / 2)
                detections.append(((x1, y1, x2, y2), f"Fish Alert {acc}"))
        print("[Roboflow Fish Response]", fish_response)
    except Exception as e:
        print("[Roboflow Fish Error]", e)

    # 3. Roboflow Bird
    try:
        print("[Animal] Detecting via Roboflow Bird model…")
        bird_response = roboflow_infer(
            img_path,
            "https://detect.roboflow.com/bird_only-pt0bm/1",
            api_key=os.getenv("ROBOFLOW_KEY", "")
        )
        for pred in bird_response.get("predictions", []):
            if pred["confidence"] >= 0.70:
                acc = pred["confidence"]
                x1 = int(pred["x"] - pred["width"] / 2)
                y1 = int(pred["y"] - pred["height"] / 2)
                x2 = int(pred["x"] + pred["width"] / 2)
                y2 = int(pred["y"] + pred["height"] / 2)
                detections.append(((x1, y1, x2, y2), f"Bird Alert {acc}"))
        print("[Roboflow Bird Response]", bird_response)
    except Exception as e:
        print("[Roboflow Bird Error]", e)

    # Count detection
    print(f"[Animal] Total detections: {len(detections)}")
    # Write label
    for (x1, y1, x2, y2), label in detections:
        cv2.rectangle(image, (x1, y1), (x2, y2), (0, 0, 255), 2)
        cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
    # Write img
    result_path = f"{OUTPUT_DIR}/{img_id}_animal.jpg"
    cv2.imwrite(result_path, image)
    return FileResponse(result_path, media_type="image/jpeg")


# ── Core pipeline (runs in background thread) ───────────────────────────
def _pipeline(uid,img_path):
    print(f"▶️ [{uid}] processing")
    bgr=cv2.resize(cv2.imread(img_path),(640,640)); rgb=cv2.cvtColor(bgr,cv2.COLOR_BGR2RGB)
    pil=Image.fromarray(rgb)

    # 1- Segmentation → masking each segmented zone with pytorch
    with torch.no_grad():
        inputs = feat_extractor(pil, return_tensors="pt")
        seg_logits = segformer(**inputs).logits
    # Tensor run by CPU
    seg_tensor = seg_logits.argmax(1)[0].cpu()
    if seg_tensor.numel() == 0:
        print(f"❌ [{uid}] segmentation failed (empty tensor)")
        video_ready[uid] = True
        return
    # Resize the tensor to 640x640
    seg = cv2.resize(seg_tensor.numpy(), (640, 640), interpolation=cv2.INTER_NEAREST)
    print(f"🧪 [{uid}] segmentation input shape: {inputs['pixel_values'].shape}")
    water_mask, garbage_mask, movable_mask = build_masks(seg) # movable zone = water and garbage masks

    # 2- Garbage detection (3 models) → keep centres on water 
    detections=[]
    # Detect garbage chunks (from segmentation)
    num_cc, labels = cv2.connectedComponents(garbage_mask.astype(np.uint8))
    chunk_centres = []
    for lab in range(1, num_cc):
        ys, xs = np.where(labels == lab)
        if xs.size == 0: # safety
            continue
        chunk_centres.append([int(xs.mean()), int(ys.mean())])
    print(f"🧠 {len(chunk_centres)} garbage chunk detected")
    # Detect garbage object by within travelable zones
    for r in model_self(bgr):                      # YOLOv11 (self-trained)
        detections += [b.xyxy[0].tolist() for b in r.boxes]
    r = model_yolo5(bgr)                           # YOLOv5
    if hasattr(r, 'pred') and len(r.pred) > 0:
        detections += [p[:4].tolist() for p in r.pred[0]]
    inp=processor_detr(images=pil,return_tensors="pt")
    with torch.no_grad(): out=model_detr(**inp)    # DETR
    post = processor_detr.post_process_object_detection(
        outputs=out,
        target_sizes=torch.tensor([pil.size[::-1]]),
        threshold=0.5
    )[0]
    detections += [b.tolist() for b in post["boxes"]]
    # centre & mask filter (the garbage lies within travelable zone are collectable)
    centres = []
    for x1, y1, x2, y2 in detections: # Define IoU heuristic
        '''
        We conduct a 20% allowance whether the center 
        of the detected garbage's bbox lies within the travelable zone
        which was segmented earlier to be the water and garbage zone
        '''
        x1, y1, x2, y2 = map(int, [x1, y1, x2, y2])
        x1 = max(0, min(x1, 639)); y1 = max(0, min(y1, 639))
        x2 = max(0, min(x2, 639)); y2 = max(0, min(y2, 639))
        box_mask = movable_mask[y1:y2, x1:x2]              # ← switch to movable_mask
        if box_mask.size == 0:
            continue
        if np.count_nonzero(box_mask) / box_mask.size >= 0.2:
            centres.append([int((x1 + x2) / 2), int((y1 + y2) / 2)])
    # add chunk centres and deduplicate
    centres.extend(chunk_centres)
    centres = [list(c) for c in {tuple(c) for c in centres}]
    if not centres: # No garbages within travelable zone
        print(f"🛑 [{uid}] no reachable garbage"); video_ready[uid]=True; return
    else: # Garbage within valid travelable zone
        print(f"🧠 {len(centres)} garbage objects on water selected from {len(detections)} detections")

    # 3- Robot initialization, position and navigation
    # find all (y,x) within water-zone
    ys, xs = np.where(water_mask)
    if len(ys)==0:
        # no travelable zone → bail out
        print(f"❌ [{uid}] no water to spawn on")
        video_ready[uid] = True
        return
    # sort by y, then x
    idx = np.lexsort((xs, ys))
    spawn_y, spawn_x = int(ys[idx[0]]), int(xs[idx[0]])
    # enforce 20px margin so sprite never pokes out
    spawn_x = np.clip(spawn_x,   20, 640-20)
    spawn_y = np.clip(spawn_y,   20, 640-20)
    robot = Robot(SPRITE)
    # Robot will be spawn on the closest movable mask to top-left
    robot.pos = [spawn_x, spawn_y]
    path, unreachable_targets = knn_path(robot.pos, centres, movable_mask)
    objs = [{"pos": p, "col": False, "unreachable": False} for p in centres if p not in unreachable_targets]
    objs += [{"pos": p, "col": False, "unreachable": True} for p in unreachable_targets]


    # 4- Video synthesis
    out_tmp=f"{OUTPUT_DIR}/{uid}_tmp.mp4"
    vw=cv2.VideoWriter(out_tmp,cv2.VideoWriter_fourcc(*"mp4v"),10.0,(640,640))
    objs=[{"pos":p,"col":False} for p in centres]
    bg = bgr.copy()
    for _ in range(15000): # safety frames
        frame=bg.copy()
        # Draw garbage chunk masks in red-to-green (semi-transparent)
        frame = highlight_chunk_masks_on_frame(frame, labels, objs)                               # 🔴 garbage overlay
        frame = highlight_water_mask_on_frame(frame, water_mask)  # 🔵 water overlay
        # Draw object detections as red (to green) dots
        for o in objs:
            color = (0, 0, 128) if not o["col"] else (0, 128, 0)
            x, y = o["pos"]
            cv2.circle(frame, (x, y), 6, color, -1)
        # Robot displacement
        robot.step(path)
        sp = robot.png
        sprite_h, sprite_w = sp.shape[:2]
        rx, ry = robot.pos
        x1, y1 = rx - sprite_w // 2, ry - sprite_h // 2
        x2, y2 = x1 + sprite_w, y1 + sprite_h
        # Clip boundaries to image size
        x1_clip, x2_clip = max(0, x1), min(frame.shape[1], x2)
        y1_clip, y2_clip = max(0, y1), min(frame.shape[0], y2)
        # Adjust sprite crop accordingly
        sx1, sy1 = x1_clip - x1, y1_clip - y1
        sx2, sy2 = sprite_w - (x2 - x2_clip), sprite_h - (y2 - y2_clip)
        sprite_crop = sp[sy1:sy2, sx1:sx2]
        alpha = sprite_crop[:, :, 3] / 255.0
        alpha = np.stack([alpha] * 3, axis=-1)
        bgroi = frame[y1_clip:y2_clip, x1_clip:x2_clip]
        blended = (alpha * sprite_crop[:, :, :3] + (1 - alpha) * bgroi).astype(np.uint8)
        frame[y1_clip:y2_clip, x1_clip:x2_clip] = blended
        # collection check
        for o in objs:
            if not o["col"] and np.hypot(o["pos"][0]-robot.pos[0], o["pos"][1]-robot.pos[1]) <= 20:
                o["col"]=True
        vw.write(frame)
        if all(o["col"] for o in objs): break
        if not path: break
    vw.release()

    # 5- Convert to H.264
    final=f"{OUTPUT_DIR}/{uid}.mp4"
    ffmpeg.input(out_tmp).output(final,vcodec="libx264",pix_fmt="yuv420p").run(overwrite_output=True,quiet=True)
    os.remove(out_tmp); video_ready[uid]=True
    print(f"✅ [{uid}] video ready → {final}")


# ── Run locally (HF Space ignores since built with Docker image) ────────
if __name__=="__main__":
    uvicorn.run(app,host="0.0.0.0",port=7860)