Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import SeamlessM4Tv2Model, AutoProcessor | |
import torch | |
import numpy as np | |
from scipy.io.wavfile import write | |
import re | |
from io import BytesIO | |
# Load the processor and model | |
processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large") | |
model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
# Number to words function for Uzbek | |
number_words = { | |
0: "nol", 1: "bir", 2: "ikki", 3: "uch", 4: "to'rt", 5: "besh", 6: "olti", 7: "yetti", 8: "sakkiz", 9: "to'qqiz", | |
10: "o'n", 11: "o'n bir", 12: "o'n ikki", 13: "o'n uch", 14: "o'n to'rt", 15: "o'n besh", 16: "o'n oltı", 17: "o'n yetti", | |
18: "o'n sakkiz", 19: "o'n toqqiz", 20: "yigirma", 30: "o'ttiz", 40: "qirq", 50: "ellik", 60: "oltmish", 70: "yetmish", | |
80: "sakson", 90: "to'qson", 100: "yuz", 1000: "ming", 1000000: "million" | |
} | |
def number_to_words(number): | |
if number < 20: | |
return number_words[number] | |
elif number < 100: | |
tens, unit = divmod(number, 10) | |
return number_words[tens * 10] + (" " + number_words[unit] if unit else "") | |
elif number < 1000: | |
hundreds, remainder = divmod(number, 100) | |
return (number_words[hundreds] + " yuz" if hundreds > 1 else "yuz") + (" " + number_to_words(remainder) if remainder else "") | |
elif number < 1000000: | |
thousands, remainder = divmod(number, 1000) | |
return (number_to_words(thousands) + " ming" if thousands > 1 else "ming") + (" " + number_to_words(remainder) if remainder else "") | |
elif number < 1000000000: | |
millions, remainder = divmod(number, 1000000) | |
return number_to_words(millions) + " million" + (" " + number_to_words(remainder) if remainder else "") | |
elif number < 1000000000000: | |
billions, remainder = divmod(number, 1000000000) | |
return number_to_words(billions) + " milliard" + (" " + number_to_words(remainder) if remainder else "") | |
else: | |
return str(number) | |
def replace_numbers_with_words(text): | |
def replace(match): | |
number = int(match.group()) | |
return number_to_words(number) | |
result = re.sub(r'\b\d+\b', replace, text) | |
return result | |
# Replacements | |
replacements = [ | |
("bo‘ladi", "bo'ladi"), | |
("yog‘ingarchilik", "yog'ingarchilik"), | |
] | |
def cleanup_text(text): | |
for src, dst in replacements: | |
text = text.replace(src, dst) | |
return text | |
# Streamlit App | |
st.title("Text-to-Speech using Seamless M4T Model") | |
# User Input | |
user_input = st.text_area("Enter the text for speech generation", height=200) | |
# Process the text and generate speech | |
if st.button("Generate Speech"): | |
if user_input.strip(): | |
# Apply text transformations | |
converted_text = replace_numbers_with_words(user_input) | |
cleaned_text = cleanup_text(converted_text) | |
# Process input for model | |
inputs = processor(text=cleaned_text, src_lang="uzn", return_tensors="pt").to(device) | |
# Generate audio from text | |
audio_array_from_text = model.generate(**inputs, tgt_lang="uzn")[0].cpu().numpy().squeeze() | |
# Save to BytesIO | |
audio_io = BytesIO() | |
write(audio_io, 16000, audio_array_from_text.astype(np.float32)) | |
audio_io.seek(0) | |
# Provide audio for playback | |
st.audio(audio_io, format='audio/wav') | |
else: | |
st.warning("Please enter some text to generate speech.") | |