File size: 3,493 Bytes
2a8ab50
7bfb172
 
 
 
 
 
2a8ab50
7bfb172
 
 
0b575c2
7bfb172
 
0b575c2
7bfb172
 
 
 
 
 
 
0b575c2
7bfb172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b575c2
7bfb172
 
 
 
 
 
2a8ab50
7bfb172
 
 
 
 
2a8ab50
7bfb172
 
 
 
2a8ab50
7bfb172
 
2a8ab50
7bfb172
 
2a8ab50
7bfb172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import streamlit as st
from transformers import SeamlessM4Tv2Model, AutoProcessor
import torch
import numpy as np
from scipy.io.wavfile import write
import re
from io import BytesIO

# Load the processor and model
processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large")
model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# Number to words function for Uzbek
number_words = {
    0: "nol", 1: "bir", 2: "ikki", 3: "uch", 4: "to'rt", 5: "besh", 6: "olti", 7: "yetti", 8: "sakkiz", 9: "to'qqiz",
    10: "o'n", 11: "o'n bir", 12: "o'n ikki", 13: "o'n uch", 14: "o'n to'rt", 15: "o'n besh", 16: "o'n oltı", 17: "o'n yetti",
    18: "o'n sakkiz", 19: "o'n toqqiz", 20: "yigirma", 30: "o'ttiz", 40: "qirq", 50: "ellik", 60: "oltmish", 70: "yetmish",
    80: "sakson", 90: "to'qson", 100: "yuz", 1000: "ming", 1000000: "million"
}

def number_to_words(number):
    if number < 20:
        return number_words[number]
    elif number < 100:
        tens, unit = divmod(number, 10)
        return number_words[tens * 10] + (" " + number_words[unit] if unit else "")
    elif number < 1000:
        hundreds, remainder = divmod(number, 100)
        return (number_words[hundreds] + " yuz" if hundreds > 1 else "yuz") + (" " + number_to_words(remainder) if remainder else "")
    elif number < 1000000:
        thousands, remainder = divmod(number, 1000)
        return (number_to_words(thousands) + " ming" if thousands > 1 else "ming") + (" " + number_to_words(remainder) if remainder else "")
    elif number < 1000000000:
        millions, remainder = divmod(number, 1000000)
        return number_to_words(millions) + " million" + (" " + number_to_words(remainder) if remainder else "")
    elif number < 1000000000000:
        billions, remainder = divmod(number, 1000000000)
        return number_to_words(billions) + " milliard" + (" " + number_to_words(remainder) if remainder else "")
    else:
        return str(number)

def replace_numbers_with_words(text):
    def replace(match):
        number = int(match.group())
        return number_to_words(number)
    result = re.sub(r'\b\d+\b', replace, text)
    return result

# Replacements
replacements = [
    ("bo‘ladi", "bo'ladi"),
    ("yog‘ingarchilik", "yog'ingarchilik"),
]

def cleanup_text(text):
    for src, dst in replacements:
        text = text.replace(src, dst)
    return text

# Streamlit App
st.title("Text-to-Speech using Seamless M4T Model")

# User Input
user_input = st.text_area("Enter the text for speech generation", height=200)

# Process the text and generate speech
if st.button("Generate Speech"):
    if user_input.strip():
        # Apply text transformations
        converted_text = replace_numbers_with_words(user_input)
        cleaned_text = cleanup_text(converted_text)
        
        # Process input for model
        inputs = processor(text=cleaned_text, src_lang="uzn", return_tensors="pt").to(device)
        
        # Generate audio from text
        audio_array_from_text = model.generate(**inputs, tgt_lang="uzn")[0].cpu().numpy().squeeze()

        # Save to BytesIO
        audio_io = BytesIO()
        write(audio_io, 16000, audio_array_from_text.astype(np.float32))
        audio_io.seek(0)

        # Provide audio for playback
        st.audio(audio_io, format='audio/wav')
    else:
        st.warning("Please enter some text to generate speech.")