File size: 10,093 Bytes
c3aef13
 
 
 
 
0a6cb95
 
 
 
 
c3aef13
 
 
 
5861022
c3aef13
5861022
 
 
 
c3aef13
 
 
 
 
 
5861022
 
 
 
c3aef13
 
 
 
0a6cb95
5861022
 
 
 
 
 
 
 
 
 
 
 
 
 
c3aef13
 
0a6cb95
 
5861022
 
 
 
 
 
 
 
 
 
 
 
 
c3aef13
 
0a6cb95
 
5861022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a6cb95
 
 
 
5861022
 
 
 
 
 
 
 
 
 
 
 
 
0a6cb95
 
 
 
5861022
 
 
 
 
 
 
 
 
 
 
 
 
909d9bf
 
 
 
c3aef13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a6cb95
c3aef13
 
 
 
 
 
 
 
0a6cb95
c3aef13
 
 
 
0a6cb95
c3aef13
 
 
0a6cb95
 
909d9bf
0a6cb95
c3aef13
 
909d9bf
 
 
 
 
 
c3aef13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a6cb95
 
c3aef13
 
0a6cb95
c3aef13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a6cb95
 
 
 
 
 
 
 
 
 
 
 
 
 
909d9bf
 
 
 
 
 
 
c3aef13
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# utils/helpers.py
"""Helper functions for model loading and embedding generation"""

import torch
import torch.nn.functional as F
from transformers import (
    AutoTokenizer, AutoModel, 
    RobertaTokenizer, RobertaModel,
    BertTokenizer, BertModel
)
from typing import List, Dict, Optional
import gc
import os

def load_models(model_names: List[str] = None) -> Dict:
    """
    Load specific embedding models with memory optimization
    
    Args:
        model_names: List of model names to load. If None, loads all models.
    
    Returns:
        Dict containing loaded models and tokenizers
    """
    models_cache = {}
    
    # Default to all models if none specified
    if model_names is None:
        model_names = ["jina", "robertalex", "jina-v3", "legal-bert", "roberta-ca"]
    
    # Set device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    try:
        # Load Jina v2 Spanish model
        if "jina" in model_names:
            print("Loading Jina embeddings v2 Spanish model...")
            jina_tokenizer = AutoTokenizer.from_pretrained(
                'jinaai/jina-embeddings-v2-base-es',
                trust_remote_code=True
            )
            jina_model = AutoModel.from_pretrained(
                'jinaai/jina-embeddings-v2-base-es',
                trust_remote_code=True,
                torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
            ).to(device)
            jina_model.eval()
            
            models_cache['jina'] = {
                'tokenizer': jina_tokenizer,
                'model': jina_model,
                'device': device,
                'pooling': 'mean'
            }
        
        # Load RoBERTalex model
        if "robertalex" in model_names:
            print("Loading RoBERTalex model...")
            robertalex_tokenizer = RobertaTokenizer.from_pretrained('PlanTL-GOB-ES/RoBERTalex')
            robertalex_model = RobertaModel.from_pretrained(
                'PlanTL-GOB-ES/RoBERTalex',
                torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
            ).to(device)
            robertalex_model.eval()
            
            models_cache['robertalex'] = {
                'tokenizer': robertalex_tokenizer,
                'model': robertalex_model,
                'device': device,
                'pooling': 'cls'
            }
        
        # Load Jina v3 model
        if "jina-v3" in model_names:
            print("Loading Jina embeddings v3 model...")
            jina_v3_tokenizer = AutoTokenizer.from_pretrained(
                'jinaai/jina-embeddings-v3',
                trust_remote_code=True
            )
            jina_v3_model = AutoModel.from_pretrained(
                'jinaai/jina-embeddings-v3',
                trust_remote_code=True,
                torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
            ).to(device)
            jina_v3_model.eval()
            
            models_cache['jina-v3'] = {
                'tokenizer': jina_v3_tokenizer,
                'model': jina_v3_model,
                'device': device,
                'pooling': 'mean'
            }
        
        # Load Legal BERT model
        if "legal-bert" in model_names:
            print("Loading Legal BERT model...")
            legal_bert_tokenizer = BertTokenizer.from_pretrained('nlpaueb/legal-bert-base-uncased')
            legal_bert_model = BertModel.from_pretrained(
                'nlpaueb/legal-bert-base-uncased',
                torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
            ).to(device)
            legal_bert_model.eval()
            
            models_cache['legal-bert'] = {
                'tokenizer': legal_bert_tokenizer,
                'model': legal_bert_model,
                'device': device,
                'pooling': 'cls'
            }
        
        # Load Catalan RoBERTa model
        if "roberta-ca" in model_names:
            print("Loading Catalan RoBERTa-large model...")
            roberta_ca_tokenizer = AutoTokenizer.from_pretrained('projecte-aina/roberta-large-ca-v2')
            roberta_ca_model = AutoModel.from_pretrained(
                'projecte-aina/roberta-large-ca-v2',
                torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
            ).to(device)
            roberta_ca_model.eval()
            
            models_cache['roberta-ca'] = {
                'tokenizer': roberta_ca_tokenizer,
                'model': roberta_ca_model,
                'device': device,
                'pooling': 'cls'
            }
        
        # Force garbage collection after loading
        gc.collect()
        
        return models_cache
        
    except Exception as e:
        print(f"Error loading models: {str(e)}")
        raise

def mean_pooling(model_output, attention_mask):
    """
    Apply mean pooling to get sentence embeddings
    
    Args:
        model_output: Model output containing token embeddings
        attention_mask: Attention mask for valid tokens
        
    Returns:
        Pooled embeddings
    """
    token_embeddings = model_output[0]
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)

def get_embeddings(
    texts: List[str], 
    model_name: str,
    models_cache: Dict,
    normalize: bool = True, 
    max_length: Optional[int] = None
) -> List[List[float]]:
    """
    Generate embeddings for texts using specified model
    
    Args:
        texts: List of texts to embed
        model_name: Name of model to use
        models_cache: Dictionary containing loaded models
        normalize: Whether to normalize embeddings
        max_length: Maximum sequence length
        
    Returns:
        List of embedding vectors
    """
    if model_name not in models_cache:
        raise ValueError(f"Model {model_name} not available. Choose from: {list(models_cache.keys())}")
    
    tokenizer = models_cache[model_name]['tokenizer']
    model = models_cache[model_name]['model']
    device = models_cache[model_name]['device']
    pooling_strategy = models_cache[model_name]['pooling']
    
    # Set max length based on model capabilities
    if max_length is None:
        if model_name in ['jina', 'jina-v3']:
            max_length = 8192
        else:  # robertalex, legal-bert, roberta-ca
            max_length = 512
    
    # Process in batches for memory efficiency
    # Reduce batch size for large models
    if model_name in ['jina-v3', 'roberta-ca']:
        batch_size = 4 if len(texts) > 4 else len(texts)
    else:
        batch_size = 8 if len(texts) > 8 else len(texts)
    
    all_embeddings = []
    
    for i in range(0, len(texts), batch_size):
        batch_texts = texts[i:i + batch_size]
        
        # Tokenize inputs
        encoded_input = tokenizer(
            batch_texts,
            padding=True,
            truncation=True,
            max_length=max_length,
            return_tensors='pt'
        ).to(device)
        
        # Generate embeddings
        with torch.no_grad():
            model_output = model(**encoded_input)
            
            if pooling_strategy == 'mean':
                # Mean pooling for Jina models
                embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
            else:
                # CLS token for BERT-based models
                embeddings = model_output.last_hidden_state[:, 0, :]
        
        # Normalize if requested
        if normalize:
            embeddings = F.normalize(embeddings, p=2, dim=1)
        
        # Convert to CPU and list
        batch_embeddings = embeddings.cpu().numpy().tolist()
        all_embeddings.extend(batch_embeddings)
    
    return all_embeddings

def cleanup_memory():
    """Force garbage collection and clear cache"""
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()

def validate_input_texts(texts: List[str]) -> List[str]:
    """
    Validate and clean input texts
    
    Args:
        texts: List of input texts
        
    Returns:
        Cleaned texts
    """
    cleaned_texts = []
    for text in texts:
        # Remove excess whitespace
        text = ' '.join(text.split())
        # Skip empty texts
        if text:
            cleaned_texts.append(text)
    
    if not cleaned_texts:
        raise ValueError("No valid texts provided after cleaning")
    
    return cleaned_texts

def get_model_info(model_name: str) -> Dict:
    """
    Get detailed information about a model
    
    Args:
        model_name: Model identifier
        
    Returns:
        Dictionary with model information
    """
    model_info = {
        'jina': {
            'full_name': 'jinaai/jina-embeddings-v2-base-es',
            'dimensions': 768,
            'max_length': 8192,
            'pooling': 'mean',
            'languages': ['Spanish', 'English']
        },
        'robertalex': {
            'full_name': 'PlanTL-GOB-ES/RoBERTalex',
            'dimensions': 768,
            'max_length': 512,
            'pooling': 'cls',
            'languages': ['Spanish']
        },
        'jina-v3': {
            'full_name': 'jinaai/jina-embeddings-v3',
            'dimensions': 1024,
            'max_length': 8192,
            'pooling': 'mean',
            'languages': ['Multilingual']
        },
        'legal-bert': {
            'full_name': 'nlpaueb/legal-bert-base-uncased',
            'dimensions': 768,
            'max_length': 512,
            'pooling': 'cls',
            'languages': ['English']
        },
        'roberta-ca': {
            'full_name': 'projecte-aina/roberta-large-ca-v2',
            'dimensions': 1024,
            'max_length': 512,
            'pooling': 'cls',
            'languages': ['Catalan']
        }
    }
    
    return model_info.get(model_name, {})