Spaces:
Sleeping
Sleeping
Jordi Catafal
commited on
Commit
·
c3aef13
1
Parent(s):
f26f739
initial deployment
Browse files- embeddings_api/Dockerfile +33 -0
- embeddings_api/app.py +108 -0
- embeddings_api/models/__init__.py +6 -0
- embeddings_api/models/schemas.py +109 -0
- embeddings_api/requirements.txt +10 -0
- embeddings_api/utils/helpers.py +207 -0
embeddings_api/Dockerfile
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9-slim
|
2 |
+
|
3 |
+
# Set environment variables
|
4 |
+
ENV PYTHONUNBUFFERED=1
|
5 |
+
ENV TRANSFORMERS_CACHE=/app/cache
|
6 |
+
ENV HF_HOME=/app/cache
|
7 |
+
ENV PYTORCH_CUDA_ALLOC_CONF=garbage_collection_threshold:0.6,max_split_size_mb:128
|
8 |
+
|
9 |
+
# Create non-root user
|
10 |
+
RUN useradd -m -u 1000 user
|
11 |
+
USER user
|
12 |
+
ENV HOME=/home/user \
|
13 |
+
PATH=/home/user/.local/bin:$PATH
|
14 |
+
|
15 |
+
# Set working directory
|
16 |
+
WORKDIR /app
|
17 |
+
|
18 |
+
# Copy requirements and install dependencies
|
19 |
+
COPY --chown=user requirements.txt .
|
20 |
+
RUN pip install --no-cache-dir --upgrade pip && \
|
21 |
+
pip install --no-cache-dir -r requirements.txt
|
22 |
+
|
23 |
+
# Copy application code
|
24 |
+
COPY --chown=user . .
|
25 |
+
|
26 |
+
# Create cache directory
|
27 |
+
RUN mkdir -p /app/cache
|
28 |
+
|
29 |
+
# Expose port
|
30 |
+
EXPOSE 7860
|
31 |
+
|
32 |
+
# Run the application
|
33 |
+
CMD ["python", "app.py"]
|
embeddings_api/app.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from typing import List
|
3 |
+
import torch
|
4 |
+
import uvicorn
|
5 |
+
import gc
|
6 |
+
import os
|
7 |
+
|
8 |
+
from models.schemas import EmbeddingRequest, EmbeddingResponse, ModelInfo
|
9 |
+
from utils.helpers import load_models, get_embeddings, cleanup_memory
|
10 |
+
|
11 |
+
app = FastAPI(
|
12 |
+
title="Spanish Embedding API",
|
13 |
+
description="Dual Spanish embedding models API",
|
14 |
+
version="1.0.0"
|
15 |
+
)
|
16 |
+
|
17 |
+
# Global model cache
|
18 |
+
models_cache = {}
|
19 |
+
|
20 |
+
@app.on_event("startup")
|
21 |
+
async def startup_event():
|
22 |
+
"""Load models on startup"""
|
23 |
+
global models_cache
|
24 |
+
models_cache = load_models()
|
25 |
+
print("Models loaded successfully!")
|
26 |
+
|
27 |
+
@app.get("/")
|
28 |
+
async def root():
|
29 |
+
return {
|
30 |
+
"message": "Spanish Embedding API",
|
31 |
+
"models": ["jina", "robertalex"],
|
32 |
+
"status": "running",
|
33 |
+
"docs": "/docs"
|
34 |
+
}
|
35 |
+
|
36 |
+
@app.post("/embed", response_model=EmbeddingResponse)
|
37 |
+
async def create_embeddings(request: EmbeddingRequest):
|
38 |
+
"""Generate embeddings for input texts"""
|
39 |
+
try:
|
40 |
+
if not request.texts:
|
41 |
+
raise HTTPException(status_code=400, detail="No texts provided")
|
42 |
+
|
43 |
+
if len(request.texts) > 50: # Rate limiting
|
44 |
+
raise HTTPException(status_code=400, detail="Maximum 50 texts per request")
|
45 |
+
|
46 |
+
embeddings = get_embeddings(
|
47 |
+
request.texts,
|
48 |
+
request.model,
|
49 |
+
models_cache,
|
50 |
+
request.normalize,
|
51 |
+
request.max_length
|
52 |
+
)
|
53 |
+
|
54 |
+
# Cleanup memory after large batches
|
55 |
+
if len(request.texts) > 20:
|
56 |
+
cleanup_memory()
|
57 |
+
|
58 |
+
return EmbeddingResponse(
|
59 |
+
embeddings=embeddings,
|
60 |
+
model_used=request.model,
|
61 |
+
dimensions=len(embeddings[0]) if embeddings else 0,
|
62 |
+
num_texts=len(request.texts)
|
63 |
+
)
|
64 |
+
|
65 |
+
except ValueError as e:
|
66 |
+
raise HTTPException(status_code=400, detail=str(e))
|
67 |
+
except Exception as e:
|
68 |
+
raise HTTPException(status_code=500, detail=f"Internal error: {str(e)}")
|
69 |
+
|
70 |
+
@app.get("/models", response_model=List[ModelInfo])
|
71 |
+
async def list_models():
|
72 |
+
"""List available models and their specifications"""
|
73 |
+
return [
|
74 |
+
ModelInfo(
|
75 |
+
model_id="jina",
|
76 |
+
name="jinaai/jina-embeddings-v2-base-es",
|
77 |
+
dimensions=768,
|
78 |
+
max_sequence_length=8192,
|
79 |
+
languages=["Spanish", "English"],
|
80 |
+
model_type="bilingual",
|
81 |
+
description="Bilingual Spanish-English embeddings with long context support"
|
82 |
+
),
|
83 |
+
ModelInfo(
|
84 |
+
model_id="robertalex",
|
85 |
+
name="PlanTL-GOB-ES/RoBERTalex",
|
86 |
+
dimensions=768,
|
87 |
+
max_sequence_length=512,
|
88 |
+
languages=["Spanish"],
|
89 |
+
model_type="legal domain",
|
90 |
+
description="Spanish legal domain specialized embeddings"
|
91 |
+
)
|
92 |
+
]
|
93 |
+
|
94 |
+
@app.get("/health")
|
95 |
+
async def health_check():
|
96 |
+
"""Health check endpoint"""
|
97 |
+
return {
|
98 |
+
"status": "healthy",
|
99 |
+
"models_loaded": len(models_cache) == 2,
|
100 |
+
"available_models": list(models_cache.keys())
|
101 |
+
}
|
102 |
+
|
103 |
+
if __name__ == "__main__":
|
104 |
+
# Set multi-threading for CPU
|
105 |
+
torch.set_num_threads(8)
|
106 |
+
torch.set_num_interop_threads(1)
|
107 |
+
|
108 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
embeddings_api/models/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# models/__init__.py
|
2 |
+
"""Models package for embedding API schemas and configurations"""
|
3 |
+
|
4 |
+
from .schemas import EmbeddingRequest, EmbeddingResponse, ModelInfo
|
5 |
+
|
6 |
+
__all__ = ['EmbeddingRequest', 'EmbeddingResponse', 'ModelInfo']
|
embeddings_api/models/schemas.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# models/schemas.py
|
2 |
+
"""Pydantic models for request/response validation"""
|
3 |
+
|
4 |
+
from pydantic import BaseModel, Field, validator
|
5 |
+
from typing import List, Optional, Literal
|
6 |
+
|
7 |
+
class EmbeddingRequest(BaseModel):
|
8 |
+
"""Request model for embedding generation"""
|
9 |
+
texts: List[str] = Field(
|
10 |
+
...,
|
11 |
+
description="List of texts to embed",
|
12 |
+
example=["Hola mundo", "¿Cómo estás?"]
|
13 |
+
)
|
14 |
+
model: Literal["jina", "robertalex"] = Field(
|
15 |
+
default="jina",
|
16 |
+
description="Model to use for embeddings"
|
17 |
+
)
|
18 |
+
normalize: bool = Field(
|
19 |
+
default=True,
|
20 |
+
description="Whether to normalize embeddings to unit length"
|
21 |
+
)
|
22 |
+
max_length: Optional[int] = Field(
|
23 |
+
default=None,
|
24 |
+
description="Maximum sequence length (uses model default if not specified)"
|
25 |
+
)
|
26 |
+
|
27 |
+
@validator('texts')
|
28 |
+
def validate_texts(cls, v):
|
29 |
+
if not v:
|
30 |
+
raise ValueError("At least one text must be provided")
|
31 |
+
if len(v) > 50:
|
32 |
+
raise ValueError("Maximum 50 texts per request")
|
33 |
+
# Check for empty strings
|
34 |
+
if any(not text.strip() for text in v):
|
35 |
+
raise ValueError("Empty texts are not allowed")
|
36 |
+
return v
|
37 |
+
|
38 |
+
@validator('max_length')
|
39 |
+
def validate_max_length(cls, v, values):
|
40 |
+
if v is not None:
|
41 |
+
model = values.get('model', 'jina')
|
42 |
+
if model == 'jina' and v > 8192:
|
43 |
+
raise ValueError("Max length for Jina model is 8192")
|
44 |
+
elif model == 'robertalex' and v > 512:
|
45 |
+
raise ValueError("Max length for RoBERTalex model is 512")
|
46 |
+
if v < 1:
|
47 |
+
raise ValueError("Max length must be positive")
|
48 |
+
return v
|
49 |
+
|
50 |
+
class EmbeddingResponse(BaseModel):
|
51 |
+
"""Response model for embedding generation"""
|
52 |
+
embeddings: List[List[float]] = Field(
|
53 |
+
...,
|
54 |
+
description="List of embedding vectors"
|
55 |
+
)
|
56 |
+
model_used: str = Field(
|
57 |
+
...,
|
58 |
+
description="Model that was used"
|
59 |
+
)
|
60 |
+
dimensions: int = Field(
|
61 |
+
...,
|
62 |
+
description="Dimension of embedding vectors"
|
63 |
+
)
|
64 |
+
num_texts: int = Field(
|
65 |
+
...,
|
66 |
+
description="Number of texts processed"
|
67 |
+
)
|
68 |
+
|
69 |
+
class ModelInfo(BaseModel):
|
70 |
+
"""Information about available models"""
|
71 |
+
model_id: str = Field(
|
72 |
+
...,
|
73 |
+
description="Model identifier for API calls"
|
74 |
+
)
|
75 |
+
name: str = Field(
|
76 |
+
...,
|
77 |
+
description="Full Hugging Face model name"
|
78 |
+
)
|
79 |
+
dimensions: int = Field(
|
80 |
+
...,
|
81 |
+
description="Output embedding dimensions"
|
82 |
+
)
|
83 |
+
max_sequence_length: int = Field(
|
84 |
+
...,
|
85 |
+
description="Maximum input sequence length"
|
86 |
+
)
|
87 |
+
languages: List[str] = Field(
|
88 |
+
...,
|
89 |
+
description="Supported languages"
|
90 |
+
)
|
91 |
+
model_type: str = Field(
|
92 |
+
...,
|
93 |
+
description="Type/domain of model"
|
94 |
+
)
|
95 |
+
description: str = Field(
|
96 |
+
...,
|
97 |
+
description="Model description"
|
98 |
+
)
|
99 |
+
|
100 |
+
class ErrorResponse(BaseModel):
|
101 |
+
"""Error response model"""
|
102 |
+
detail: str = Field(
|
103 |
+
...,
|
104 |
+
description="Error message"
|
105 |
+
)
|
106 |
+
error_type: Optional[str] = Field(
|
107 |
+
default=None,
|
108 |
+
description="Type of error"
|
109 |
+
)
|
embeddings_api/requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.104.1
|
2 |
+
uvicorn[standard]==0.24.0
|
3 |
+
transformers==4.36.0
|
4 |
+
torch==2.1.0+cpu --index-url https://download.pytorch.org/whl/cpu
|
5 |
+
sentence-transformers==2.2.2
|
6 |
+
numpy<2.0.0
|
7 |
+
scikit-learn==1.3.2
|
8 |
+
pydantic==2.5.0
|
9 |
+
huggingface-hub==0.19.4
|
10 |
+
python-multipart==0.0.6
|
embeddings_api/utils/helpers.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# utils/helpers.py
|
2 |
+
"""Helper functions for model loading and embedding generation"""
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from transformers import AutoTokenizer, AutoModel, RobertaTokenizer, RobertaModel
|
7 |
+
from typing import List, Dict, Optional
|
8 |
+
import gc
|
9 |
+
import os
|
10 |
+
|
11 |
+
def load_models() -> Dict:
|
12 |
+
"""
|
13 |
+
Load both embedding models with memory optimization
|
14 |
+
|
15 |
+
Returns:
|
16 |
+
Dict containing loaded models and tokenizers
|
17 |
+
"""
|
18 |
+
models_cache = {}
|
19 |
+
|
20 |
+
# Set device
|
21 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
+
|
23 |
+
try:
|
24 |
+
# Load Jina model
|
25 |
+
print("Loading Jina embeddings model...")
|
26 |
+
jina_tokenizer = AutoTokenizer.from_pretrained(
|
27 |
+
'jinaai/jina-embeddings-v2-base-es',
|
28 |
+
trust_remote_code=True
|
29 |
+
)
|
30 |
+
jina_model = AutoModel.from_pretrained(
|
31 |
+
'jinaai/jina-embeddings-v2-base-es',
|
32 |
+
trust_remote_code=True,
|
33 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
34 |
+
).to(device)
|
35 |
+
jina_model.eval()
|
36 |
+
|
37 |
+
# Load RoBERTalex model
|
38 |
+
print("Loading RoBERTalex model...")
|
39 |
+
robertalex_tokenizer = RobertaTokenizer.from_pretrained('PlanTL-GOB-ES/RoBERTalex')
|
40 |
+
robertalex_model = RobertaModel.from_pretrained(
|
41 |
+
'PlanTL-GOB-ES/RoBERTalex',
|
42 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
43 |
+
).to(device)
|
44 |
+
robertalex_model.eval()
|
45 |
+
|
46 |
+
models_cache = {
|
47 |
+
'jina': {
|
48 |
+
'tokenizer': jina_tokenizer,
|
49 |
+
'model': jina_model,
|
50 |
+
'device': device
|
51 |
+
},
|
52 |
+
'robertalex': {
|
53 |
+
'tokenizer': robertalex_tokenizer,
|
54 |
+
'model': robertalex_model,
|
55 |
+
'device': device
|
56 |
+
}
|
57 |
+
}
|
58 |
+
|
59 |
+
# Force garbage collection after loading
|
60 |
+
gc.collect()
|
61 |
+
|
62 |
+
return models_cache
|
63 |
+
|
64 |
+
except Exception as e:
|
65 |
+
print(f"Error loading models: {str(e)}")
|
66 |
+
raise
|
67 |
+
|
68 |
+
def mean_pooling(model_output, attention_mask):
|
69 |
+
"""
|
70 |
+
Apply mean pooling to get sentence embeddings
|
71 |
+
|
72 |
+
Args:
|
73 |
+
model_output: Model output containing token embeddings
|
74 |
+
attention_mask: Attention mask for valid tokens
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
Pooled embeddings
|
78 |
+
"""
|
79 |
+
token_embeddings = model_output[0]
|
80 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
81 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
82 |
+
|
83 |
+
def get_embeddings(
|
84 |
+
texts: List[str],
|
85 |
+
model_name: str,
|
86 |
+
models_cache: Dict,
|
87 |
+
normalize: bool = True,
|
88 |
+
max_length: Optional[int] = None
|
89 |
+
) -> List[List[float]]:
|
90 |
+
"""
|
91 |
+
Generate embeddings for texts using specified model
|
92 |
+
|
93 |
+
Args:
|
94 |
+
texts: List of texts to embed
|
95 |
+
model_name: Name of model to use ('jina' or 'robertalex')
|
96 |
+
models_cache: Dictionary containing loaded models
|
97 |
+
normalize: Whether to normalize embeddings
|
98 |
+
max_length: Maximum sequence length
|
99 |
+
|
100 |
+
Returns:
|
101 |
+
List of embedding vectors
|
102 |
+
"""
|
103 |
+
if model_name not in models_cache:
|
104 |
+
raise ValueError(f"Model {model_name} not available. Choose 'jina' or 'robertalex'")
|
105 |
+
|
106 |
+
tokenizer = models_cache[model_name]['tokenizer']
|
107 |
+
model = models_cache[model_name]['model']
|
108 |
+
device = models_cache[model_name]['device']
|
109 |
+
|
110 |
+
# Set max length based on model capabilities
|
111 |
+
if max_length is None:
|
112 |
+
max_length = 8192 if model_name == 'jina' else 512
|
113 |
+
|
114 |
+
# Process in batches for memory efficiency
|
115 |
+
batch_size = 8 if len(texts) > 8 else len(texts)
|
116 |
+
all_embeddings = []
|
117 |
+
|
118 |
+
for i in range(0, len(texts), batch_size):
|
119 |
+
batch_texts = texts[i:i + batch_size]
|
120 |
+
|
121 |
+
# Tokenize inputs
|
122 |
+
encoded_input = tokenizer(
|
123 |
+
batch_texts,
|
124 |
+
padding=True,
|
125 |
+
truncation=True,
|
126 |
+
max_length=max_length,
|
127 |
+
return_tensors='pt'
|
128 |
+
).to(device)
|
129 |
+
|
130 |
+
# Generate embeddings
|
131 |
+
with torch.no_grad():
|
132 |
+
model_output = model(**encoded_input)
|
133 |
+
|
134 |
+
if model_name == 'jina':
|
135 |
+
# Jina models require mean pooling
|
136 |
+
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
137 |
+
else:
|
138 |
+
# RoBERTalex: use [CLS] token embedding
|
139 |
+
embeddings = model_output.last_hidden_state[:, 0, :]
|
140 |
+
|
141 |
+
# Normalize if requested
|
142 |
+
if normalize:
|
143 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
144 |
+
|
145 |
+
# Convert to CPU and list
|
146 |
+
batch_embeddings = embeddings.cpu().numpy().tolist()
|
147 |
+
all_embeddings.extend(batch_embeddings)
|
148 |
+
|
149 |
+
return all_embeddings
|
150 |
+
|
151 |
+
def cleanup_memory():
|
152 |
+
"""Force garbage collection and clear cache"""
|
153 |
+
gc.collect()
|
154 |
+
if torch.cuda.is_available():
|
155 |
+
torch.cuda.empty_cache()
|
156 |
+
|
157 |
+
def validate_input_texts(texts: List[str]) -> List[str]:
|
158 |
+
"""
|
159 |
+
Validate and clean input texts
|
160 |
+
|
161 |
+
Args:
|
162 |
+
texts: List of input texts
|
163 |
+
|
164 |
+
Returns:
|
165 |
+
Cleaned texts
|
166 |
+
"""
|
167 |
+
cleaned_texts = []
|
168 |
+
for text in texts:
|
169 |
+
# Remove excess whitespace
|
170 |
+
text = ' '.join(text.split())
|
171 |
+
# Skip empty texts
|
172 |
+
if text:
|
173 |
+
cleaned_texts.append(text)
|
174 |
+
|
175 |
+
if not cleaned_texts:
|
176 |
+
raise ValueError("No valid texts provided after cleaning")
|
177 |
+
|
178 |
+
return cleaned_texts
|
179 |
+
|
180 |
+
def get_model_info(model_name: str) -> Dict:
|
181 |
+
"""
|
182 |
+
Get detailed information about a model
|
183 |
+
|
184 |
+
Args:
|
185 |
+
model_name: Model identifier
|
186 |
+
|
187 |
+
Returns:
|
188 |
+
Dictionary with model information
|
189 |
+
"""
|
190 |
+
model_info = {
|
191 |
+
'jina': {
|
192 |
+
'full_name': 'jinaai/jina-embeddings-v2-base-es',
|
193 |
+
'dimensions': 768,
|
194 |
+
'max_length': 8192,
|
195 |
+
'pooling': 'mean',
|
196 |
+
'languages': ['Spanish', 'English']
|
197 |
+
},
|
198 |
+
'robertalex': {
|
199 |
+
'full_name': 'PlanTL-GOB-ES/RoBERTalex',
|
200 |
+
'dimensions': 768,
|
201 |
+
'max_length': 512,
|
202 |
+
'pooling': 'cls',
|
203 |
+
'languages': ['Spanish']
|
204 |
+
}
|
205 |
+
}
|
206 |
+
|
207 |
+
return model_info.get(model_name, {})
|