Add multi-quantize functions, logging of the use, and export to organizations

#1
Files changed (1) hide show
  1. app.py +181 -261
app.py CHANGED
@@ -1,30 +1,39 @@
1
  import os
2
  import subprocess
3
  import signal
4
- os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
5
- import gradio as gr
6
  import tempfile
7
-
8
- from huggingface_hub import HfApi, ModelCard, whoami
9
- from gradio_huggingfacehub_search import HuggingfaceHubSearch
10
  from pathlib import Path
11
  from textwrap import dedent
 
 
 
 
12
  from apscheduler.schedulers.background import BackgroundScheduler
 
13
 
14
-
15
- # used for restarting the space
16
- HF_TOKEN = os.environ.get("HF_TOKEN")
17
  CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py"
 
 
 
 
 
 
 
 
 
18
 
19
- # escape HTML for logging
20
  def escape(s: str) -> str:
21
- s = s.replace("&", "&") # Must be done first!
22
- s = s.replace("<", "&lt;")
23
- s = s.replace(">", "&gt;")
24
- s = s.replace('"', "&quot;")
25
- s = s.replace("\n", "<br/>")
26
- return s
27
 
 
 
 
 
 
 
 
 
28
  def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str):
29
  imatrix_command = [
30
  "./llama.cpp/llama-imatrix",
@@ -54,13 +63,13 @@ def generate_importance_matrix(model_path: str, train_data_path: str, output_pat
54
 
55
  print("Importance matrix generation completed.")
56
 
57
- def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
58
  print(f"Model path: {model_path}")
59
  print(f"Output dir: {outdir}")
60
 
61
  if oauth_token is None or oauth_token.token is None:
62
  raise ValueError("You have to be logged in.")
63
-
64
  split_cmd = [
65
  "./llama.cpp/llama-gguf-split",
66
  "--split",
@@ -77,12 +86,12 @@ def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token:
77
  split_cmd.append(model_path)
78
  split_cmd.append(model_path_prefix)
79
 
80
- print(f"Split command: {split_cmd}")
81
-
82
  result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True)
83
- print(f"Split command stdout: {result.stdout}")
84
- print(f"Split command stderr: {result.stderr}")
85
-
86
  if result.returncode != 0:
87
  stderr_str = result.stderr.decode("utf-8")
88
  raise Exception(f"Error splitting the model: {stderr_str}")
@@ -93,11 +102,14 @@ def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token:
93
  os.remove(model_path)
94
 
95
  model_file_prefix = model_path_prefix.split('/')[-1]
96
- print(f"Model file name prefix: {model_file_prefix}")
97
  sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")]
98
  if sharded_model_files:
99
  print(f"Sharded model files: {sharded_model_files}")
100
- api = HfApi(token=oauth_token.token)
 
 
 
101
  for file in sharded_model_files:
102
  file_path = os.path.join(outdir, file)
103
  print(f"Uploading file: {file_path}")
@@ -111,214 +123,111 @@ def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token:
111
  raise Exception(f"Error uploading file {file_path}: {e}")
112
  else:
113
  raise Exception("No sharded files found.")
114
-
115
  print("Sharded model has been uploaded successfully!")
116
 
117
- def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
 
 
118
  if oauth_token is None or oauth_token.token is None:
119
  raise gr.Error("You must be logged in to use GGUF-my-repo")
120
 
121
- # validate the oauth token
122
- try:
123
- whoami(oauth_token.token)
124
- except Exception as e:
125
- raise gr.Error("You must be logged in to use GGUF-my-repo")
 
 
 
 
126
 
 
127
  model_name = model_id.split('/')[-1]
 
 
128
 
129
- try:
130
- api = HfApi(token=oauth_token.token)
 
 
 
 
131
 
132
- dl_pattern = ["*.md", "*.json", "*.model"]
 
133
 
134
- pattern = (
135
- "*.safetensors"
136
- if any(
137
- file.path.endswith(".safetensors")
138
- for file in api.list_repo_tree(
139
- repo_id=model_id,
140
- recursive=True,
141
- )
142
- )
143
- else "*.bin"
144
- )
145
-
146
- dl_pattern += [pattern]
147
-
148
- if not os.path.exists("downloads"):
149
- os.makedirs("downloads")
150
-
151
- if not os.path.exists("outputs"):
152
- os.makedirs("outputs")
153
-
154
- with tempfile.TemporaryDirectory(dir="outputs") as outdir:
155
- fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf")
156
-
157
- with tempfile.TemporaryDirectory(dir="downloads") as tmpdir:
158
- # Keep the model name as the dirname so the model name metadata is populated correctly
159
- local_dir = Path(tmpdir)/model_name
160
- print(local_dir)
161
- api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
162
- print("Model downloaded successfully!")
163
- print(f"Current working directory: {os.getcwd()}")
164
- print(f"Model directory contents: {os.listdir(local_dir)}")
165
-
166
- config_dir = local_dir/"config.json"
167
- adapter_config_dir = local_dir/"adapter_config.json"
168
- if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
169
- raise Exception('adapter_config.json is present.<br/><br/>If you are converting a LoRA adapter to GGUF, please use <a href="https://huggingface.co/spaces/ggml-org/gguf-my-lora" target="_blank" style="text-decoration:underline">GGUF-my-lora</a>.')
170
-
171
- result = subprocess.run([
172
- "python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16
173
- ], shell=False, capture_output=True)
174
- print(result)
175
- if result.returncode != 0:
176
- stderr_str = result.stderr.decode("utf-8")
177
- raise Exception(f"Error converting to fp16: {stderr_str}")
178
- print("Model converted to fp16 successfully!")
179
- print(f"Converted model path: {fp16}")
180
-
181
- imatrix_path = Path(outdir)/"imatrix.dat"
182
-
183
- if use_imatrix:
184
- if train_data_file:
185
- train_data_path = train_data_file.name
186
- else:
187
- train_data_path = "llama.cpp/groups_merged.txt" #fallback calibration dataset
188
-
189
- print(f"Training data file path: {train_data_path}")
190
-
191
- if not os.path.isfile(train_data_path):
192
- raise Exception(f"Training data file not found: {train_data_path}")
193
-
194
- generate_importance_matrix(fp16, train_data_path, imatrix_path)
195
- else:
196
- print("Not using imatrix quantization.")
197
-
198
- # Quantize the model
199
- quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
200
- quantized_gguf_path = str(Path(outdir)/quantized_gguf_name)
201
- if use_imatrix:
202
- quantise_ggml = [
203
- "./llama.cpp/llama-quantize",
204
- "--imatrix", imatrix_path, fp16, quantized_gguf_path, imatrix_q_method
205
- ]
206
- else:
207
- quantise_ggml = [
208
- "./llama.cpp/llama-quantize",
209
- fp16, quantized_gguf_path, q_method
210
- ]
211
- result = subprocess.run(quantise_ggml, shell=False, capture_output=True)
212
- if result.returncode != 0:
213
- stderr_str = result.stderr.decode("utf-8")
214
- raise Exception(f"Error quantizing: {stderr_str}")
215
- print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
216
- print(f"Quantized model path: {quantized_gguf_path}")
217
 
218
- # Create empty repo
219
- username = whoami(oauth_token.token)["name"]
220
- new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
221
- new_repo_id = new_repo_url.repo_id
222
- print("Repo created successfully!", new_repo_url)
223
 
224
- try:
225
- card = ModelCard.load(model_id, token=oauth_token.token)
226
- except:
227
- card = ModelCard("")
228
- if card.data.tags is None:
229
- card.data.tags = []
230
- card.data.tags.append("llama-cpp")
231
- card.data.tags.append("gguf-my-repo")
232
- card.data.base_model = model_id
233
- card.text = dedent(
234
- f"""
235
- # {new_repo_id}
236
- This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
237
- Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
238
-
239
- ## Use with llama.cpp
240
- Install llama.cpp through brew (works on Mac and Linux)
241
-
242
- ```bash
243
- brew install llama.cpp
244
-
245
- ```
246
- Invoke the llama.cpp server or the CLI.
247
-
248
- ### CLI:
249
- ```bash
250
- llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
251
- ```
252
-
253
- ### Server:
254
- ```bash
255
- llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
256
- ```
257
-
258
- Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
259
-
260
- Step 1: Clone llama.cpp from GitHub.
261
- ```
262
- git clone https://github.com/ggerganov/llama.cpp
263
- ```
264
-
265
- Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
266
- ```
267
- cd llama.cpp && LLAMA_CURL=1 make
268
- ```
269
-
270
- Step 3: Run inference through the main binary.
271
- ```
272
- ./llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
273
- ```
274
- or
275
- ```
276
- ./llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
277
- ```
278
- """
279
- )
280
- readme_path = Path(outdir)/"README.md"
281
- card.save(readme_path)
282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
283
  if split_model:
284
- split_upload_model(str(quantized_gguf_path), outdir, new_repo_id, oauth_token, split_max_tensors, split_max_size)
285
  else:
286
- try:
287
- print(f"Uploading quantized model: {quantized_gguf_path}")
288
- api.upload_file(
289
- path_or_fileobj=quantized_gguf_path,
290
- path_in_repo=quantized_gguf_name,
291
- repo_id=new_repo_id,
292
- )
293
- except Exception as e:
294
- raise Exception(f"Error uploading quantized model: {e}")
295
-
296
- if os.path.isfile(imatrix_path):
297
- try:
298
- print(f"Uploading imatrix.dat: {imatrix_path}")
299
- api.upload_file(
300
- path_or_fileobj=imatrix_path,
301
- path_in_repo="imatrix.dat",
302
- repo_id=new_repo_id,
303
- )
304
- except Exception as e:
305
- raise Exception(f"Error uploading imatrix.dat: {e}")
306
-
307
- api.upload_file(
308
- path_or_fileobj=readme_path,
309
- path_in_repo="README.md",
310
- repo_id=new_repo_id,
311
- )
312
- print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!")
313
-
314
- # end of the TemporaryDirectory(dir="outputs") block; temporary outputs are deleted here
315
-
316
- return (
317
- f'<h1>βœ… DONE</h1><br/>Find your repo here: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{new_repo_id}</a>',
318
- "llama.png",
319
- )
320
- except Exception as e:
321
- return (f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{escape(str(e))}</pre>', "error.png")
322
 
323
 
324
  css="""/* Custom CSS to allow scrolling */
@@ -330,20 +239,40 @@ model_id = HuggingfaceHubSearch(
330
  search_type="model",
331
  )
332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333
  q_method = gr.Dropdown(
334
  ["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
335
  label="Quantization Method",
336
  info="GGML quantization type",
337
  value="Q4_K_M",
338
  filterable=False,
339
- visible=True
 
340
  )
341
 
342
  imatrix_q_method = gr.Dropdown(
343
  ["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
344
  label="Imatrix Quantization Method",
345
  info="GGML imatrix quants type",
346
- value="IQ4_NL",
347
  filterable=False,
348
  visible=False
349
  )
@@ -386,58 +315,49 @@ split_max_size = gr.Textbox(
386
  )
387
 
388
  iface = gr.Interface(
389
- fn=process_model,
390
- inputs=[
391
- model_id,
392
- q_method,
393
- use_imatrix,
394
- imatrix_q_method,
395
- private_repo,
396
- train_data_file,
397
- split_model,
398
- split_max_tensors,
399
- split_max_size,
400
- ],
401
- outputs=[
402
- gr.Markdown(label="output"),
403
- gr.Image(show_label=False),
404
- ],
405
- title="Create your own GGUF Quants, blazingly fast ⚑!",
406
- description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.",
407
- api_name=False
408
- )
409
-
410
- # Create Gradio interface
411
- with gr.Blocks(css=css) as demo:
412
- gr.Markdown("You must be logged in to use GGUF-my-repo.")
 
413
  gr.LoginButton(min_width=250)
414
 
415
- iface.render()
416
 
417
- def update_split_visibility(split_model):
418
- return gr.update(visible=split_model), gr.update(visible=split_model)
419
 
420
- split_model.change(
421
- fn=update_split_visibility,
422
- inputs=split_model,
423
- outputs=[split_max_tensors, split_max_size]
424
- )
 
 
425
 
426
- def update_visibility(use_imatrix):
427
- return gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix)
428
-
429
- use_imatrix.change(
430
- fn=update_visibility,
431
- inputs=use_imatrix,
432
- outputs=[q_method, imatrix_q_method, train_data_file]
433
- )
434
 
435
  def restart_space():
436
- HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
437
 
438
  scheduler = BackgroundScheduler()
439
  scheduler.add_job(restart_space, "interval", seconds=21600)
440
  scheduler.start()
441
 
442
- # Launch the interface
443
  demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)
 
1
  import os
2
  import subprocess
3
  import signal
 
 
4
  import tempfile
 
 
 
5
  from pathlib import Path
6
  from textwrap import dedent
7
+ import logging
8
+ import gradio as gr
9
+ from huggingface_hub import HfApi, ModelCard, whoami
10
+ from gradio_huggingfacehub_search import HuggingfaceHubSearch
11
  from apscheduler.schedulers.background import BackgroundScheduler
12
+ from datetime import datetime
13
 
14
+ os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
 
 
15
  CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py"
16
+ logger = logging.getLogger(__name__)
17
+
18
+ def get_repo_namespace(repo_owner, username, user_orgs):
19
+ if repo_owner == 'self':
20
+ return username
21
+ for org in user_orgs:
22
+ if org['name'] == repo_owner:
23
+ return org['name']
24
+ raise ValueError(f"Invalid repo_owner: {repo_owner}")
25
 
 
26
  def escape(s: str) -> str:
27
+ return s.replace("&", "&amp;").replace("<", "&lt;").replace(">", "&gt;").replace('"', "&quot;").replace("\n", "<br/>")
 
 
 
 
 
28
 
29
+ def toggle_repo_owner(export_to_org, oauth_token: gr.OAuthToken | None):
30
+ if oauth_token is None or oauth_token.token is None:
31
+ raise gr.Error("You must be logged in to use GGUF-my-repo")
32
+ if not export_to_org:
33
+ return gr.update(visible=False, choices=["self"], value="self"), gr.update(visible=False, value="")
34
+ info = whoami(oauth_token.token)
35
+ orgs = [org["name"] for org in info.get("orgs", [])]
36
+ return gr.update(visible=True, choices=["self"] + orgs, value="self"), gr.update(visible=True)
37
  def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str):
38
  imatrix_command = [
39
  "./llama.cpp/llama-imatrix",
 
63
 
64
  print("Importance matrix generation completed.")
65
 
66
+ def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None, org_token=None, export_to_org=False):
67
  print(f"Model path: {model_path}")
68
  print(f"Output dir: {outdir}")
69
 
70
  if oauth_token is None or oauth_token.token is None:
71
  raise ValueError("You have to be logged in.")
72
+
73
  split_cmd = [
74
  "./llama.cpp/llama-gguf-split",
75
  "--split",
 
86
  split_cmd.append(model_path)
87
  split_cmd.append(model_path_prefix)
88
 
89
+ print(f"Split command: {split_cmd}")
90
+
91
  result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True)
92
+ print(f"Split command stdout: {result.stdout}")
93
+ print(f"Split command stderr: {result.stderr}")
94
+
95
  if result.returncode != 0:
96
  stderr_str = result.stderr.decode("utf-8")
97
  raise Exception(f"Error splitting the model: {stderr_str}")
 
102
  os.remove(model_path)
103
 
104
  model_file_prefix = model_path_prefix.split('/')[-1]
105
+ print(f"Model file name prefix: {model_file_prefix}")
106
  sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")]
107
  if sharded_model_files:
108
  print(f"Sharded model files: {sharded_model_files}")
109
+ if export_to_org and org_token!="":
110
+ api = HfApi(token = org_token)
111
+ else:
112
+ api = HfApi(token=oauth_token.token)
113
  for file in sharded_model_files:
114
  file_path = os.path.join(outdir, file)
115
  print(f"Uploading file: {file_path}")
 
123
  raise Exception(f"Error uploading file {file_path}: {e}")
124
  else:
125
  raise Exception("No sharded files found.")
126
+
127
  print("Sharded model has been uploaded successfully!")
128
 
129
+ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo,
130
+ train_data_file, split_model, split_max_tensors, split_max_size,
131
+ export_to_org, repo_owner, org_token, oauth_token: gr.OAuthToken | None):
132
  if oauth_token is None or oauth_token.token is None:
133
  raise gr.Error("You must be logged in to use GGUF-my-repo")
134
 
135
+ user_info = whoami(oauth_token.token)
136
+ username = user_info["name"]
137
+ user_orgs = user_info.get("orgs", [])
138
+ if not export_to_org:
139
+ repo_owner = "self"
140
+
141
+
142
+ current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
143
+ print(f"Time {current_time}, Username {username}, Model_ID, {model_id}, q_method {','.join(q_method)}")
144
 
145
+ repo_namespace = get_repo_namespace(repo_owner, username, user_orgs)
146
  model_name = model_id.split('/')[-1]
147
+ api_token = org_token if (export_to_org and org_token!="") else oauth_token.token
148
+ api = HfApi(token=api_token)
149
 
150
+ dl_pattern = ["*.md", "*.json", "*.model"]
151
+ pattern = "*.safetensors" if any(
152
+ f.path.endswith(".safetensors")
153
+ for f in api.list_repo_tree(repo_id=model_id, recursive=True)
154
+ ) else "*.bin"
155
+ dl_pattern += [pattern]
156
 
157
+ os.makedirs("downloads", exist_ok=True)
158
+ os.makedirs("outputs", exist_ok=True)
159
 
160
+ with tempfile.TemporaryDirectory(dir="outputs") as outdir:
161
+ fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
 
163
+ with tempfile.TemporaryDirectory(dir="downloads") as tmpdir:
164
+ local_dir = Path(tmpdir)/model_name
165
+ api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
 
 
166
 
167
+ config_dir = local_dir/"config.json"
168
+ adapter_config_dir = local_dir/"adapter_config.json"
169
+ if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
170
+ raise Exception("adapter_config.json is present. If converting LoRA, use GGUF-my-lora.")
171
+
172
+ result = subprocess.run(["python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16], shell=False, capture_output=True)
173
+ if result.returncode != 0:
174
+ raise Exception(f"Error converting to fp16: {result.stderr.decode()}")
175
+
176
+ imatrix_path = Path(outdir)/"imatrix.dat"
177
+ if use_imatrix:
178
+ train_data_path = train_data_file.name if train_data_file else "llama.cpp/groups_merged.txt"
179
+ if not os.path.isfile(train_data_path):
180
+ raise Exception(f"Training data not found: {train_data_path}")
181
+ generate_importance_matrix(fp16, train_data_path, imatrix_path)
182
+
183
+ quant_methods = [imatrix_q_method] if use_imatrix else (q_method if isinstance(q_method, list) else [q_method])
184
+ suffix = "imat" if use_imatrix else None
185
+
186
+ gguf_files = []
187
+ for method in quant_methods:
188
+ name = f"{model_name.lower()}-{method.lower()}-{suffix}.gguf" if suffix else f"{model_name.lower()}-{method.lower()}.gguf"
189
+ path = str(Path(outdir)/name)
190
+ quant_cmd = ["./llama.cpp/llama-quantize", "--imatrix", imatrix_path, fp16, path, method] if use_imatrix else ["./llama.cpp/llama-quantize", fp16, path, method]
191
+ result = subprocess.run(quant_cmd, shell=False, capture_output=True)
192
+ if result.returncode != 0:
193
+ raise Exception(f"Quantization failed ({method}): {result.stderr.decode()}")
194
+ gguf_files.append((name, path))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195
 
196
+ suffix_for_repo = f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods)
197
+ repo_id = f"{repo_namespace}/{model_name}-{suffix_for_repo}-GGUF"
198
+ new_repo_url = api.create_repo(repo_id=repo_id, exist_ok=True, private=private_repo)
199
+
200
+ try:
201
+ card = ModelCard.load(model_id, token=oauth_token.token)
202
+ except:
203
+ card = ModelCard("")
204
+ card.data.tags = (card.data.tags or []) + ["llama-cpp", "gguf-my-repo"]
205
+ card.data.base_model = model_id
206
+ card.text = dedent(f"""
207
+ # {repo_id}
208
+ Absolutely tremendous! This repo features **GGUF quantized** versions of [{model_id}](https://huggingface.co/{model_id}) β€” made possible using the *very powerful* `llama.cpp`. Believe me, it's fast, it's smart, it's winning.
209
+ ## Quantized Versions:
210
+ Only the best quantization. You’ll love it.
211
+ ## Run with llama.cpp
212
+ Just plug it in, hit the command line, and boom β€” you're running world-class AI, folks:
213
+ ```bash
214
+ llama-cli --hf-repo {repo_id} --hf-file {gguf_files[0][0]} -p "AI First, but also..."
215
+ ```
216
+ This beautiful Hugging Face Space was brought to you by the **amazing team at [Antigma Labs](https://antigma.ai)**. Great people. Big vision. Doing things that matter β€” and doing them right.
217
+ Total winners.
218
+ """)
219
+ readme_path = Path(outdir)/"README.md"
220
+ card.save(readme_path)
221
+ for name, path in gguf_files:
222
  if split_model:
223
+ split_upload_model(path, outdir, repo_id, oauth_token, split_max_tensors, split_max_size, org_token, export_to_org)
224
  else:
225
+ api.upload_file(path_or_fileobj=path, path_in_repo=name, repo_id=repo_id)
226
+ if use_imatrix and os.path.isfile(imatrix_path):
227
+ api.upload_file(path_or_fileobj=imatrix_path, path_in_repo="imatrix.dat", repo_id=repo_id)
228
+ api.upload_file(path_or_fileobj=readme_path, path_in_repo="README.md", repo_id=repo_id)
229
+
230
+ return (f'<h1>βœ… DONE</h1><br/>Repo: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{repo_id}</a>', "llama.png")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231
 
232
 
233
  css="""/* Custom CSS to allow scrolling */
 
239
  search_type="model",
240
  )
241
 
242
+ export_to_org = gr.Checkbox(
243
+ label="Export to Organization Repository",
244
+ value=False,
245
+ info="If checked, you can select an organization to export to."
246
+ )
247
+
248
+ repo_owner = gr.Dropdown(
249
+ choices=["self"],
250
+ value="self",
251
+ label="Repository Owner",
252
+ visible=False
253
+ )
254
+
255
+ org_token = gr.Textbox(
256
+ label="Org Access Token",
257
+ type="password",
258
+ visible=False
259
+ )
260
+
261
  q_method = gr.Dropdown(
262
  ["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
263
  label="Quantization Method",
264
  info="GGML quantization type",
265
  value="Q4_K_M",
266
  filterable=False,
267
+ visible=True,
268
+ multiselect=True
269
  )
270
 
271
  imatrix_q_method = gr.Dropdown(
272
  ["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
273
  label="Imatrix Quantization Method",
274
  info="GGML imatrix quants type",
275
+ value="IQ4_NL",
276
  filterable=False,
277
  visible=False
278
  )
 
315
  )
316
 
317
  iface = gr.Interface(
318
+ fn=process_model,
319
+ inputs=[
320
+ model_id,
321
+ q_method,
322
+ use_imatrix,
323
+ imatrix_q_method,
324
+ private_repo,
325
+ train_data_file,
326
+ split_model,
327
+ split_max_tensors,
328
+ split_max_size,
329
+ export_to_org,
330
+ repo_owner,
331
+ org_token
332
+ ],
333
+ outputs=[
334
+ gr.Markdown(label="Output"),
335
+ gr.Image(show_label=False)
336
+ ],
337
+ title="Make your own GGUF Quants β€” faster than ever before, believe me.",
338
+ description="We take your Hugging Face repo β€” a terrific repo β€” we quantize it, we package it beautifully, and we give you your very own repo. It's smart. It's efficient. It's huge. You're gonna love it.",
339
+ api_name=False
340
+ )
341
+ with gr.Blocks(css=".gradio-container {overflow-y: auto;}") as demo:
342
+ gr.Markdown("Logged in, you must be. Classy, secure, and victorious, it keeps us.")
343
  gr.LoginButton(min_width=250)
344
 
 
345
 
 
 
346
 
347
+ export_to_org.change(fn=toggle_repo_owner, inputs=[export_to_org], outputs=[repo_owner, org_token])
348
+
349
+ split_model.change(fn=lambda sm: (gr.update(visible=sm), gr.update(visible=sm)), inputs=split_model, outputs=[split_max_tensors, split_max_size])
350
+ use_imatrix.change(fn=lambda use: (gr.update(visible=not use), gr.update(visible=use), gr.update(visible=use)), inputs=use_imatrix, outputs=[q_method, imatrix_q_method, train_data_file])
351
+
352
+ iface.render()
353
+
354
 
 
 
 
 
 
 
 
 
355
 
356
  def restart_space():
357
+ HfApi().restart_space(repo_id="Brianpuz/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
358
 
359
  scheduler = BackgroundScheduler()
360
  scheduler.add_job(restart_space, "interval", seconds=21600)
361
  scheduler.start()
362
 
 
363
  demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)