Spaces:
Runtime error
Runtime error
Add multi-quantize functions, logging of the use, and export to organizations
#1
by
Brianpuz
- opened
app.py
CHANGED
@@ -1,30 +1,39 @@
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
import signal
|
4 |
-
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
5 |
-
import gradio as gr
|
6 |
import tempfile
|
7 |
-
|
8 |
-
from huggingface_hub import HfApi, ModelCard, whoami
|
9 |
-
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
10 |
from pathlib import Path
|
11 |
from textwrap import dedent
|
|
|
|
|
|
|
|
|
12 |
from apscheduler.schedulers.background import BackgroundScheduler
|
|
|
13 |
|
14 |
-
|
15 |
-
# used for restarting the space
|
16 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
17 |
CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
# escape HTML for logging
|
20 |
def escape(s: str) -> str:
|
21 |
-
|
22 |
-
s = s.replace("<", "<")
|
23 |
-
s = s.replace(">", ">")
|
24 |
-
s = s.replace('"', """)
|
25 |
-
s = s.replace("\n", "<br/>")
|
26 |
-
return s
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str):
|
29 |
imatrix_command = [
|
30 |
"./llama.cpp/llama-imatrix",
|
@@ -54,13 +63,13 @@ def generate_importance_matrix(model_path: str, train_data_path: str, output_pat
|
|
54 |
|
55 |
print("Importance matrix generation completed.")
|
56 |
|
57 |
-
def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
|
58 |
print(f"Model path: {model_path}")
|
59 |
print(f"Output dir: {outdir}")
|
60 |
|
61 |
if oauth_token is None or oauth_token.token is None:
|
62 |
raise ValueError("You have to be logged in.")
|
63 |
-
|
64 |
split_cmd = [
|
65 |
"./llama.cpp/llama-gguf-split",
|
66 |
"--split",
|
@@ -77,12 +86,12 @@ def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token:
|
|
77 |
split_cmd.append(model_path)
|
78 |
split_cmd.append(model_path_prefix)
|
79 |
|
80 |
-
print(f"Split command: {split_cmd}")
|
81 |
-
|
82 |
result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True)
|
83 |
-
print(f"Split command stdout: {result.stdout}")
|
84 |
-
print(f"Split command stderr: {result.stderr}")
|
85 |
-
|
86 |
if result.returncode != 0:
|
87 |
stderr_str = result.stderr.decode("utf-8")
|
88 |
raise Exception(f"Error splitting the model: {stderr_str}")
|
@@ -93,11 +102,14 @@ def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token:
|
|
93 |
os.remove(model_path)
|
94 |
|
95 |
model_file_prefix = model_path_prefix.split('/')[-1]
|
96 |
-
print(f"Model file name prefix: {model_file_prefix}")
|
97 |
sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")]
|
98 |
if sharded_model_files:
|
99 |
print(f"Sharded model files: {sharded_model_files}")
|
100 |
-
|
|
|
|
|
|
|
101 |
for file in sharded_model_files:
|
102 |
file_path = os.path.join(outdir, file)
|
103 |
print(f"Uploading file: {file_path}")
|
@@ -111,214 +123,111 @@ def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token:
|
|
111 |
raise Exception(f"Error uploading file {file_path}: {e}")
|
112 |
else:
|
113 |
raise Exception("No sharded files found.")
|
114 |
-
|
115 |
print("Sharded model has been uploaded successfully!")
|
116 |
|
117 |
-
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo,
|
|
|
|
|
118 |
if oauth_token is None or oauth_token.token is None:
|
119 |
raise gr.Error("You must be logged in to use GGUF-my-repo")
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
126 |
|
|
|
127 |
model_name = model_id.split('/')[-1]
|
|
|
|
|
128 |
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
131 |
|
132 |
-
|
|
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
if any(
|
137 |
-
file.path.endswith(".safetensors")
|
138 |
-
for file in api.list_repo_tree(
|
139 |
-
repo_id=model_id,
|
140 |
-
recursive=True,
|
141 |
-
)
|
142 |
-
)
|
143 |
-
else "*.bin"
|
144 |
-
)
|
145 |
-
|
146 |
-
dl_pattern += [pattern]
|
147 |
-
|
148 |
-
if not os.path.exists("downloads"):
|
149 |
-
os.makedirs("downloads")
|
150 |
-
|
151 |
-
if not os.path.exists("outputs"):
|
152 |
-
os.makedirs("outputs")
|
153 |
-
|
154 |
-
with tempfile.TemporaryDirectory(dir="outputs") as outdir:
|
155 |
-
fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf")
|
156 |
-
|
157 |
-
with tempfile.TemporaryDirectory(dir="downloads") as tmpdir:
|
158 |
-
# Keep the model name as the dirname so the model name metadata is populated correctly
|
159 |
-
local_dir = Path(tmpdir)/model_name
|
160 |
-
print(local_dir)
|
161 |
-
api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
162 |
-
print("Model downloaded successfully!")
|
163 |
-
print(f"Current working directory: {os.getcwd()}")
|
164 |
-
print(f"Model directory contents: {os.listdir(local_dir)}")
|
165 |
-
|
166 |
-
config_dir = local_dir/"config.json"
|
167 |
-
adapter_config_dir = local_dir/"adapter_config.json"
|
168 |
-
if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
|
169 |
-
raise Exception('adapter_config.json is present.<br/><br/>If you are converting a LoRA adapter to GGUF, please use <a href="https://huggingface.co/spaces/ggml-org/gguf-my-lora" target="_blank" style="text-decoration:underline">GGUF-my-lora</a>.')
|
170 |
-
|
171 |
-
result = subprocess.run([
|
172 |
-
"python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16
|
173 |
-
], shell=False, capture_output=True)
|
174 |
-
print(result)
|
175 |
-
if result.returncode != 0:
|
176 |
-
stderr_str = result.stderr.decode("utf-8")
|
177 |
-
raise Exception(f"Error converting to fp16: {stderr_str}")
|
178 |
-
print("Model converted to fp16 successfully!")
|
179 |
-
print(f"Converted model path: {fp16}")
|
180 |
-
|
181 |
-
imatrix_path = Path(outdir)/"imatrix.dat"
|
182 |
-
|
183 |
-
if use_imatrix:
|
184 |
-
if train_data_file:
|
185 |
-
train_data_path = train_data_file.name
|
186 |
-
else:
|
187 |
-
train_data_path = "llama.cpp/groups_merged.txt" #fallback calibration dataset
|
188 |
-
|
189 |
-
print(f"Training data file path: {train_data_path}")
|
190 |
-
|
191 |
-
if not os.path.isfile(train_data_path):
|
192 |
-
raise Exception(f"Training data file not found: {train_data_path}")
|
193 |
-
|
194 |
-
generate_importance_matrix(fp16, train_data_path, imatrix_path)
|
195 |
-
else:
|
196 |
-
print("Not using imatrix quantization.")
|
197 |
-
|
198 |
-
# Quantize the model
|
199 |
-
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
|
200 |
-
quantized_gguf_path = str(Path(outdir)/quantized_gguf_name)
|
201 |
-
if use_imatrix:
|
202 |
-
quantise_ggml = [
|
203 |
-
"./llama.cpp/llama-quantize",
|
204 |
-
"--imatrix", imatrix_path, fp16, quantized_gguf_path, imatrix_q_method
|
205 |
-
]
|
206 |
-
else:
|
207 |
-
quantise_ggml = [
|
208 |
-
"./llama.cpp/llama-quantize",
|
209 |
-
fp16, quantized_gguf_path, q_method
|
210 |
-
]
|
211 |
-
result = subprocess.run(quantise_ggml, shell=False, capture_output=True)
|
212 |
-
if result.returncode != 0:
|
213 |
-
stderr_str = result.stderr.decode("utf-8")
|
214 |
-
raise Exception(f"Error quantizing: {stderr_str}")
|
215 |
-
print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
216 |
-
print(f"Quantized model path: {quantized_gguf_path}")
|
217 |
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
new_repo_id = new_repo_url.repo_id
|
222 |
-
print("Repo created successfully!", new_repo_url)
|
223 |
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
### Server:
|
254 |
-
```bash
|
255 |
-
llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
256 |
-
```
|
257 |
-
|
258 |
-
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
259 |
-
|
260 |
-
Step 1: Clone llama.cpp from GitHub.
|
261 |
-
```
|
262 |
-
git clone https://github.com/ggerganov/llama.cpp
|
263 |
-
```
|
264 |
-
|
265 |
-
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
266 |
-
```
|
267 |
-
cd llama.cpp && LLAMA_CURL=1 make
|
268 |
-
```
|
269 |
-
|
270 |
-
Step 3: Run inference through the main binary.
|
271 |
-
```
|
272 |
-
./llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
|
273 |
-
```
|
274 |
-
or
|
275 |
-
```
|
276 |
-
./llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
277 |
-
```
|
278 |
-
"""
|
279 |
-
)
|
280 |
-
readme_path = Path(outdir)/"README.md"
|
281 |
-
card.save(readme_path)
|
282 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
if split_model:
|
284 |
-
split_upload_model(
|
285 |
else:
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
)
|
293 |
-
except Exception as e:
|
294 |
-
raise Exception(f"Error uploading quantized model: {e}")
|
295 |
-
|
296 |
-
if os.path.isfile(imatrix_path):
|
297 |
-
try:
|
298 |
-
print(f"Uploading imatrix.dat: {imatrix_path}")
|
299 |
-
api.upload_file(
|
300 |
-
path_or_fileobj=imatrix_path,
|
301 |
-
path_in_repo="imatrix.dat",
|
302 |
-
repo_id=new_repo_id,
|
303 |
-
)
|
304 |
-
except Exception as e:
|
305 |
-
raise Exception(f"Error uploading imatrix.dat: {e}")
|
306 |
-
|
307 |
-
api.upload_file(
|
308 |
-
path_or_fileobj=readme_path,
|
309 |
-
path_in_repo="README.md",
|
310 |
-
repo_id=new_repo_id,
|
311 |
-
)
|
312 |
-
print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
313 |
-
|
314 |
-
# end of the TemporaryDirectory(dir="outputs") block; temporary outputs are deleted here
|
315 |
-
|
316 |
-
return (
|
317 |
-
f'<h1>β
DONE</h1><br/>Find your repo here: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{new_repo_id}</a>',
|
318 |
-
"llama.png",
|
319 |
-
)
|
320 |
-
except Exception as e:
|
321 |
-
return (f'<h1>β ERROR</h1><br/><pre style="white-space:pre-wrap;">{escape(str(e))}</pre>', "error.png")
|
322 |
|
323 |
|
324 |
css="""/* Custom CSS to allow scrolling */
|
@@ -330,20 +239,40 @@ model_id = HuggingfaceHubSearch(
|
|
330 |
search_type="model",
|
331 |
)
|
332 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
q_method = gr.Dropdown(
|
334 |
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
|
335 |
label="Quantization Method",
|
336 |
info="GGML quantization type",
|
337 |
value="Q4_K_M",
|
338 |
filterable=False,
|
339 |
-
visible=True
|
|
|
340 |
)
|
341 |
|
342 |
imatrix_q_method = gr.Dropdown(
|
343 |
["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
|
344 |
label="Imatrix Quantization Method",
|
345 |
info="GGML imatrix quants type",
|
346 |
-
value="IQ4_NL",
|
347 |
filterable=False,
|
348 |
visible=False
|
349 |
)
|
@@ -386,58 +315,49 @@ split_max_size = gr.Textbox(
|
|
386 |
)
|
387 |
|
388 |
iface = gr.Interface(
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
|
|
413 |
gr.LoginButton(min_width=250)
|
414 |
|
415 |
-
iface.render()
|
416 |
|
417 |
-
def update_split_visibility(split_model):
|
418 |
-
return gr.update(visible=split_model), gr.update(visible=split_model)
|
419 |
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
|
|
|
|
425 |
|
426 |
-
def update_visibility(use_imatrix):
|
427 |
-
return gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix)
|
428 |
-
|
429 |
-
use_imatrix.change(
|
430 |
-
fn=update_visibility,
|
431 |
-
inputs=use_imatrix,
|
432 |
-
outputs=[q_method, imatrix_q_method, train_data_file]
|
433 |
-
)
|
434 |
|
435 |
def restart_space():
|
436 |
-
HfApi().restart_space(repo_id="
|
437 |
|
438 |
scheduler = BackgroundScheduler()
|
439 |
scheduler.add_job(restart_space, "interval", seconds=21600)
|
440 |
scheduler.start()
|
441 |
|
442 |
-
# Launch the interface
|
443 |
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)
|
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
import signal
|
|
|
|
|
4 |
import tempfile
|
|
|
|
|
|
|
5 |
from pathlib import Path
|
6 |
from textwrap import dedent
|
7 |
+
import logging
|
8 |
+
import gradio as gr
|
9 |
+
from huggingface_hub import HfApi, ModelCard, whoami
|
10 |
+
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
11 |
from apscheduler.schedulers.background import BackgroundScheduler
|
12 |
+
from datetime import datetime
|
13 |
|
14 |
+
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
|
|
|
|
15 |
CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py"
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
def get_repo_namespace(repo_owner, username, user_orgs):
|
19 |
+
if repo_owner == 'self':
|
20 |
+
return username
|
21 |
+
for org in user_orgs:
|
22 |
+
if org['name'] == repo_owner:
|
23 |
+
return org['name']
|
24 |
+
raise ValueError(f"Invalid repo_owner: {repo_owner}")
|
25 |
|
|
|
26 |
def escape(s: str) -> str:
|
27 |
+
return s.replace("&", "&").replace("<", "<").replace(">", ">").replace('"', """).replace("\n", "<br/>")
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
def toggle_repo_owner(export_to_org, oauth_token: gr.OAuthToken | None):
|
30 |
+
if oauth_token is None or oauth_token.token is None:
|
31 |
+
raise gr.Error("You must be logged in to use GGUF-my-repo")
|
32 |
+
if not export_to_org:
|
33 |
+
return gr.update(visible=False, choices=["self"], value="self"), gr.update(visible=False, value="")
|
34 |
+
info = whoami(oauth_token.token)
|
35 |
+
orgs = [org["name"] for org in info.get("orgs", [])]
|
36 |
+
return gr.update(visible=True, choices=["self"] + orgs, value="self"), gr.update(visible=True)
|
37 |
def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str):
|
38 |
imatrix_command = [
|
39 |
"./llama.cpp/llama-imatrix",
|
|
|
63 |
|
64 |
print("Importance matrix generation completed.")
|
65 |
|
66 |
+
def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None, org_token=None, export_to_org=False):
|
67 |
print(f"Model path: {model_path}")
|
68 |
print(f"Output dir: {outdir}")
|
69 |
|
70 |
if oauth_token is None or oauth_token.token is None:
|
71 |
raise ValueError("You have to be logged in.")
|
72 |
+
|
73 |
split_cmd = [
|
74 |
"./llama.cpp/llama-gguf-split",
|
75 |
"--split",
|
|
|
86 |
split_cmd.append(model_path)
|
87 |
split_cmd.append(model_path_prefix)
|
88 |
|
89 |
+
print(f"Split command: {split_cmd}")
|
90 |
+
|
91 |
result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True)
|
92 |
+
print(f"Split command stdout: {result.stdout}")
|
93 |
+
print(f"Split command stderr: {result.stderr}")
|
94 |
+
|
95 |
if result.returncode != 0:
|
96 |
stderr_str = result.stderr.decode("utf-8")
|
97 |
raise Exception(f"Error splitting the model: {stderr_str}")
|
|
|
102 |
os.remove(model_path)
|
103 |
|
104 |
model_file_prefix = model_path_prefix.split('/')[-1]
|
105 |
+
print(f"Model file name prefix: {model_file_prefix}")
|
106 |
sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")]
|
107 |
if sharded_model_files:
|
108 |
print(f"Sharded model files: {sharded_model_files}")
|
109 |
+
if export_to_org and org_token!="":
|
110 |
+
api = HfApi(token = org_token)
|
111 |
+
else:
|
112 |
+
api = HfApi(token=oauth_token.token)
|
113 |
for file in sharded_model_files:
|
114 |
file_path = os.path.join(outdir, file)
|
115 |
print(f"Uploading file: {file_path}")
|
|
|
123 |
raise Exception(f"Error uploading file {file_path}: {e}")
|
124 |
else:
|
125 |
raise Exception("No sharded files found.")
|
126 |
+
|
127 |
print("Sharded model has been uploaded successfully!")
|
128 |
|
129 |
+
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo,
|
130 |
+
train_data_file, split_model, split_max_tensors, split_max_size,
|
131 |
+
export_to_org, repo_owner, org_token, oauth_token: gr.OAuthToken | None):
|
132 |
if oauth_token is None or oauth_token.token is None:
|
133 |
raise gr.Error("You must be logged in to use GGUF-my-repo")
|
134 |
|
135 |
+
user_info = whoami(oauth_token.token)
|
136 |
+
username = user_info["name"]
|
137 |
+
user_orgs = user_info.get("orgs", [])
|
138 |
+
if not export_to_org:
|
139 |
+
repo_owner = "self"
|
140 |
+
|
141 |
+
|
142 |
+
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
143 |
+
print(f"Time {current_time}, Username {username}, Model_ID, {model_id}, q_method {','.join(q_method)}")
|
144 |
|
145 |
+
repo_namespace = get_repo_namespace(repo_owner, username, user_orgs)
|
146 |
model_name = model_id.split('/')[-1]
|
147 |
+
api_token = org_token if (export_to_org and org_token!="") else oauth_token.token
|
148 |
+
api = HfApi(token=api_token)
|
149 |
|
150 |
+
dl_pattern = ["*.md", "*.json", "*.model"]
|
151 |
+
pattern = "*.safetensors" if any(
|
152 |
+
f.path.endswith(".safetensors")
|
153 |
+
for f in api.list_repo_tree(repo_id=model_id, recursive=True)
|
154 |
+
) else "*.bin"
|
155 |
+
dl_pattern += [pattern]
|
156 |
|
157 |
+
os.makedirs("downloads", exist_ok=True)
|
158 |
+
os.makedirs("outputs", exist_ok=True)
|
159 |
|
160 |
+
with tempfile.TemporaryDirectory(dir="outputs") as outdir:
|
161 |
+
fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
+
with tempfile.TemporaryDirectory(dir="downloads") as tmpdir:
|
164 |
+
local_dir = Path(tmpdir)/model_name
|
165 |
+
api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
|
|
|
|
166 |
|
167 |
+
config_dir = local_dir/"config.json"
|
168 |
+
adapter_config_dir = local_dir/"adapter_config.json"
|
169 |
+
if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
|
170 |
+
raise Exception("adapter_config.json is present. If converting LoRA, use GGUF-my-lora.")
|
171 |
+
|
172 |
+
result = subprocess.run(["python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16], shell=False, capture_output=True)
|
173 |
+
if result.returncode != 0:
|
174 |
+
raise Exception(f"Error converting to fp16: {result.stderr.decode()}")
|
175 |
+
|
176 |
+
imatrix_path = Path(outdir)/"imatrix.dat"
|
177 |
+
if use_imatrix:
|
178 |
+
train_data_path = train_data_file.name if train_data_file else "llama.cpp/groups_merged.txt"
|
179 |
+
if not os.path.isfile(train_data_path):
|
180 |
+
raise Exception(f"Training data not found: {train_data_path}")
|
181 |
+
generate_importance_matrix(fp16, train_data_path, imatrix_path)
|
182 |
+
|
183 |
+
quant_methods = [imatrix_q_method] if use_imatrix else (q_method if isinstance(q_method, list) else [q_method])
|
184 |
+
suffix = "imat" if use_imatrix else None
|
185 |
+
|
186 |
+
gguf_files = []
|
187 |
+
for method in quant_methods:
|
188 |
+
name = f"{model_name.lower()}-{method.lower()}-{suffix}.gguf" if suffix else f"{model_name.lower()}-{method.lower()}.gguf"
|
189 |
+
path = str(Path(outdir)/name)
|
190 |
+
quant_cmd = ["./llama.cpp/llama-quantize", "--imatrix", imatrix_path, fp16, path, method] if use_imatrix else ["./llama.cpp/llama-quantize", fp16, path, method]
|
191 |
+
result = subprocess.run(quant_cmd, shell=False, capture_output=True)
|
192 |
+
if result.returncode != 0:
|
193 |
+
raise Exception(f"Quantization failed ({method}): {result.stderr.decode()}")
|
194 |
+
gguf_files.append((name, path))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
+
suffix_for_repo = f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods)
|
197 |
+
repo_id = f"{repo_namespace}/{model_name}-{suffix_for_repo}-GGUF"
|
198 |
+
new_repo_url = api.create_repo(repo_id=repo_id, exist_ok=True, private=private_repo)
|
199 |
+
|
200 |
+
try:
|
201 |
+
card = ModelCard.load(model_id, token=oauth_token.token)
|
202 |
+
except:
|
203 |
+
card = ModelCard("")
|
204 |
+
card.data.tags = (card.data.tags or []) + ["llama-cpp", "gguf-my-repo"]
|
205 |
+
card.data.base_model = model_id
|
206 |
+
card.text = dedent(f"""
|
207 |
+
# {repo_id}
|
208 |
+
Absolutely tremendous! This repo features **GGUF quantized** versions of [{model_id}](https://huggingface.co/{model_id}) β made possible using the *very powerful* `llama.cpp`. Believe me, it's fast, it's smart, it's winning.
|
209 |
+
## Quantized Versions:
|
210 |
+
Only the best quantization. Youβll love it.
|
211 |
+
## Run with llama.cpp
|
212 |
+
Just plug it in, hit the command line, and boom β you're running world-class AI, folks:
|
213 |
+
```bash
|
214 |
+
llama-cli --hf-repo {repo_id} --hf-file {gguf_files[0][0]} -p "AI First, but also..."
|
215 |
+
```
|
216 |
+
This beautiful Hugging Face Space was brought to you by the **amazing team at [Antigma Labs](https://antigma.ai)**. Great people. Big vision. Doing things that matter β and doing them right.
|
217 |
+
Total winners.
|
218 |
+
""")
|
219 |
+
readme_path = Path(outdir)/"README.md"
|
220 |
+
card.save(readme_path)
|
221 |
+
for name, path in gguf_files:
|
222 |
if split_model:
|
223 |
+
split_upload_model(path, outdir, repo_id, oauth_token, split_max_tensors, split_max_size, org_token, export_to_org)
|
224 |
else:
|
225 |
+
api.upload_file(path_or_fileobj=path, path_in_repo=name, repo_id=repo_id)
|
226 |
+
if use_imatrix and os.path.isfile(imatrix_path):
|
227 |
+
api.upload_file(path_or_fileobj=imatrix_path, path_in_repo="imatrix.dat", repo_id=repo_id)
|
228 |
+
api.upload_file(path_or_fileobj=readme_path, path_in_repo="README.md", repo_id=repo_id)
|
229 |
+
|
230 |
+
return (f'<h1>β
DONE</h1><br/>Repo: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{repo_id}</a>', "llama.png")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
|
233 |
css="""/* Custom CSS to allow scrolling */
|
|
|
239 |
search_type="model",
|
240 |
)
|
241 |
|
242 |
+
export_to_org = gr.Checkbox(
|
243 |
+
label="Export to Organization Repository",
|
244 |
+
value=False,
|
245 |
+
info="If checked, you can select an organization to export to."
|
246 |
+
)
|
247 |
+
|
248 |
+
repo_owner = gr.Dropdown(
|
249 |
+
choices=["self"],
|
250 |
+
value="self",
|
251 |
+
label="Repository Owner",
|
252 |
+
visible=False
|
253 |
+
)
|
254 |
+
|
255 |
+
org_token = gr.Textbox(
|
256 |
+
label="Org Access Token",
|
257 |
+
type="password",
|
258 |
+
visible=False
|
259 |
+
)
|
260 |
+
|
261 |
q_method = gr.Dropdown(
|
262 |
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
|
263 |
label="Quantization Method",
|
264 |
info="GGML quantization type",
|
265 |
value="Q4_K_M",
|
266 |
filterable=False,
|
267 |
+
visible=True,
|
268 |
+
multiselect=True
|
269 |
)
|
270 |
|
271 |
imatrix_q_method = gr.Dropdown(
|
272 |
["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
|
273 |
label="Imatrix Quantization Method",
|
274 |
info="GGML imatrix quants type",
|
275 |
+
value="IQ4_NL",
|
276 |
filterable=False,
|
277 |
visible=False
|
278 |
)
|
|
|
315 |
)
|
316 |
|
317 |
iface = gr.Interface(
|
318 |
+
fn=process_model,
|
319 |
+
inputs=[
|
320 |
+
model_id,
|
321 |
+
q_method,
|
322 |
+
use_imatrix,
|
323 |
+
imatrix_q_method,
|
324 |
+
private_repo,
|
325 |
+
train_data_file,
|
326 |
+
split_model,
|
327 |
+
split_max_tensors,
|
328 |
+
split_max_size,
|
329 |
+
export_to_org,
|
330 |
+
repo_owner,
|
331 |
+
org_token
|
332 |
+
],
|
333 |
+
outputs=[
|
334 |
+
gr.Markdown(label="Output"),
|
335 |
+
gr.Image(show_label=False)
|
336 |
+
],
|
337 |
+
title="Make your own GGUF Quants β faster than ever before, believe me.",
|
338 |
+
description="We take your Hugging Face repo β a terrific repo β we quantize it, we package it beautifully, and we give you your very own repo. It's smart. It's efficient. It's huge. You're gonna love it.",
|
339 |
+
api_name=False
|
340 |
+
)
|
341 |
+
with gr.Blocks(css=".gradio-container {overflow-y: auto;}") as demo:
|
342 |
+
gr.Markdown("Logged in, you must be. Classy, secure, and victorious, it keeps us.")
|
343 |
gr.LoginButton(min_width=250)
|
344 |
|
|
|
345 |
|
|
|
|
|
346 |
|
347 |
+
export_to_org.change(fn=toggle_repo_owner, inputs=[export_to_org], outputs=[repo_owner, org_token])
|
348 |
+
|
349 |
+
split_model.change(fn=lambda sm: (gr.update(visible=sm), gr.update(visible=sm)), inputs=split_model, outputs=[split_max_tensors, split_max_size])
|
350 |
+
use_imatrix.change(fn=lambda use: (gr.update(visible=not use), gr.update(visible=use), gr.update(visible=use)), inputs=use_imatrix, outputs=[q_method, imatrix_q_method, train_data_file])
|
351 |
+
|
352 |
+
iface.render()
|
353 |
+
|
354 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
|
356 |
def restart_space():
|
357 |
+
HfApi().restart_space(repo_id="Brianpuz/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
|
358 |
|
359 |
scheduler = BackgroundScheduler()
|
360 |
scheduler.add_job(restart_space, "interval", seconds=21600)
|
361 |
scheduler.start()
|
362 |
|
|
|
363 |
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)
|