Spaces:
Runtime error
Runtime error
File size: 16,646 Bytes
57cd4b7 f2c9828 e88cde7 3081403 f574f6b c12824a f574f6b a6e9176 fd089ea 897dd96 f574f6b 4425968 3ea29f2 8fbdf58 3ea29f2 8a60066 3ea29f2 f574f6b 8a60066 3ea29f2 8a60066 3ea29f2 8a60066 3ea29f2 8a60066 3ea29f2 8a60066 3ea29f2 f574f6b 8a60066 f574f6b 8a60066 f574f6b 4425968 8a60066 4425968 f574f6b 8a60066 f574f6b 8a60066 4425968 8a60066 4425968 e88cde7 4425968 e88cde7 8a60066 e88cde7 8a60066 4425968 66cce51 441a3ff f574f6b 4425968 441a3ff 4425968 8a60066 4425968 f574f6b 4425968 f574f6b 441a3ff 4425968 441a3ff 4425968 8a60066 f574f6b 8a60066 441a3ff 8a60066 f574f6b 8a60066 441a3ff 4425968 441a3ff f574f6b 441a3ff 8a60066 b2c6134 359e454 1476b80 f574f6b 8a60066 f574f6b 8a60066 1476b80 f574f6b 8a60066 3ea29f2 8a60066 897dd96 8a60066 897dd96 8a60066 897dd96 8a60066 897dd96 8a60066 897dd96 8a60066 897dd96 8a60066 897dd96 8a60066 897dd96 8a60066 3ea29f2 8a60066 3081403 839677f 8a60066 33ed555 a89dc66 f574f6b 8a60066 f574f6b 8a60066 f574f6b 8a60066 f574f6b a89dc66 8a60066 a89dc66 f574f6b 8a60066 a89dc66 f574f6b a89dc66 8a60066 a89dc66 8a60066 a89dc66 8a60066 a89dc66 8a60066 a89dc66 8a60066 a89dc66 8a60066 a89dc66 8a60066 a89dc66 f574f6b 8a60066 f574f6b 8a60066 f574f6b 3ea29f2 f574f6b a89dc66 8a60066 f574f6b f2c9828 c12824a 8a60066 c12824a 79c4836 c12824a 8a60066 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
import os
import subprocess
import signal
import tempfile
from pathlib import Path
from textwrap import dedent
import logging
import gradio as gr
from huggingface_hub import HfApi, ModelCard, whoami
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler
from datetime import datetime
import numpy as np
HF_TOKEN = os.environ.get("HF_TOKEN")
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py"
log_dir = "/data/logs"
downloads_dir = "/data/downloads"
outputs_dir = "/data/outputs"
os.makedirs(log_dir, exist_ok=True)
logging.basicConfig(
filename=os.path.join(log_dir, "app.log"),
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
def get_llama_cpp_notes(gguf_files, new_repo_url, split_model, model_id = None,):
try:
result = subprocess.run(
['git', '-C', './llama.cpp', 'describe', '--tags', '--always'],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
check=True,
text=True
)
version = result.stdout.strip().split('-')[0]
text = f"""
*Produced by [Antigma Labs](https://antigma.ai)*
## llama.cpp quantization
Using <a href="https://github.com/ggml-org/llama.cpp">llama.cpp</a> release <a href="https://github.com/ggml-org/llama.cpp/releases/tag/{version}">b4944</a> for quantization.
Original model: https://huggingface.co/{model_id}
Run them directly with [llama.cpp](https://github.com/ggml-org/llama.cpp), or any other llama.cpp based project
## Prompt format
```
<|begin▁of▁sentence|>{{system_prompt}}<|User|>{{prompt}}<|Assistant|><|end▁of▁sentence|><|Assistant|>
```
## Download a file (not the whole branch) from below:
| Filename | Quant type | File Size | Split |
| -------- | ---------- | --------- | ----- |
| {'|'.join(['|'.join([gguf_files[i][0][:-5] if split_model else ('['+gguf_files[i][0]+']'+'(' + new_repo_url+'/blob/main/'+gguf_files[i][0] + ')'), gguf_files[i][3], f"{gguf_files[i][2]:.2f}" + ' GB', str(split_model),'''
''']) for i in range(len(gguf_files))]) }
## Downloading using huggingface-cli
<details>
<summary>Click to view download instructions</summary>
First, make sure you have hugginface-cli installed:
```
pip install -U "huggingface_hub[cli]"
```
Then, you can target the specific file you want:
```
huggingface-cli download {new_repo_url} --include "{gguf_files[0][0]}" --local-dir ./
```
If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
```
huggingface-cli download {new_repo_url} --include "{gguf_files[0][0]}/*" --local-dir ./
```
You can either specify a new local-dir (deepseek-ai_DeepSeek-V3-0324-Q8_0) or download them all in place (./)
</details>
"""
return text
except subprocess.CalledProcessError as e:
print("Error:", e.stderr.strip())
return None
def get_repo_namespace(repo_owner, username, user_orgs):
if repo_owner == 'self':
return username
for org in user_orgs:
if org['name'] == repo_owner:
return org['name']
raise ValueError(f"Invalid repo_owner: {repo_owner}")
def escape(s: str) -> str:
return s.replace("&", "&").replace("<", "<").replace(">", ">").replace('"', """).replace("\n", "<br/>")
def toggle_repo_owner(export_to_org, oauth_token: gr.OAuthToken | None):
if oauth_token is None or oauth_token.token is None:
raise gr.Error("You must be logged in to use GGUF-my-repo")
if not export_to_org:
return gr.update(visible=False, choices=["self"], value="self"), gr.update(visible=False, value="")
info = whoami(oauth_token.token)
orgs = [org["name"] for org in info.get("orgs", [])]
return gr.update(visible=True, choices=["self"] + orgs, value="self"), gr.update(visible=True)
def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str):
imatrix_command = [
"./llama.cpp/llama-imatrix",
"-m", model_path,
"-f", train_data_path,
"-ngl", "99",
"--output-frequency", "10",
"-o", output_path,
]
if not os.path.isfile(model_path):
raise Exception(f"Model file not found: {model_path}")
print("Running imatrix command...")
process = subprocess.Popen(imatrix_command, shell=False)
try:
process.wait(timeout=60) # added wait
except subprocess.TimeoutExpired:
print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...")
process.send_signal(signal.SIGINT)
try:
process.wait(timeout=5) # grace period
except subprocess.TimeoutExpired:
print("Imatrix proc still didn't term. Forecfully terming process...")
process.kill()
print("Importance matrix generation completed.")
def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None, org_token=None, export_to_org=False):
print(f"Model path: {model_path}")
print(f"Output dir: {outdir}")
if oauth_token is None or oauth_token.token is None:
raise ValueError("You have to be logged in.")
split_cmd = [
"./llama.cpp/llama-gguf-split",
"--split",
]
if split_max_size:
split_cmd.append("--split-max-size")
split_cmd.append(split_max_size)
else:
split_cmd.append("--split-max-tensors")
split_cmd.append(str(split_max_tensors))
# args for output
model_path_prefix = '.'.join(model_path.split('.')[:-1]) # remove the file extension
split_cmd.append(model_path)
split_cmd.append(model_path_prefix)
print(f"Split command: {split_cmd}")
result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True)
print(f"Split command stdout: {result.stdout}")
print(f"Split command stderr: {result.stderr}")
if result.returncode != 0:
stderr_str = result.stderr.decode("utf-8")
raise Exception(f"Error splitting the model: {stderr_str}")
print("Model split successfully!")
# remove the original model file if needed
if os.path.exists(model_path):
os.remove(model_path)
model_file_prefix = model_path_prefix.split('/')[-1]
print(f"Model file name prefix: {model_file_prefix}")
sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")]
if sharded_model_files:
print(f"Sharded model files: {sharded_model_files}")
if export_to_org and org_token!="":
api = HfApi(token = org_token)
else:
api = HfApi(token=oauth_token.token)
for file in sharded_model_files:
file_path = os.path.join(outdir, file)
print(f"Uploading file: {file_path}")
try:
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=file,
repo_id=repo_id,
)
except Exception as e:
raise Exception(f"Error uploading file {file_path}: {e}")
else:
raise Exception("No sharded files found.")
print("Sharded model has been uploaded successfully!")
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo,
train_data_file, split_model, split_max_tensors, split_max_size,
export_to_org, repo_owner, org_token, oauth_token: gr.OAuthToken | None):
if oauth_token is None or oauth_token.token is None:
raise gr.Error("You must be logged in to use GGUF-my-repo")
user_info = whoami(oauth_token.token)
username = user_info["name"]
user_orgs = user_info.get("orgs", [])
if not export_to_org:
repo_owner = "self"
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
logger.info(f"Time {current_time}, Username {username}, Model_ID, {model_id}, q_method {','.join(q_method)}")
repo_namespace = get_repo_namespace(repo_owner, username, user_orgs)
model_name = model_id.split('/')[-1]
try:
api_token = org_token if (export_to_org and org_token!="") else oauth_token.token
api = HfApi(token=api_token)
dl_pattern = ["*.md", "*.json", "*.model"]
pattern = "*.safetensors" if any(
f.path.endswith(".safetensors")
for f in api.list_repo_tree(repo_id=model_id, recursive=True)
) else "*.bin"
dl_pattern += [pattern]
os.makedirs(downloads_dir, exist_ok=True)
os.makedirs(outputs_dir, exist_ok=True)
with tempfile.TemporaryDirectory(dir=outputs_dir) as outdir:
fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf")
with tempfile.TemporaryDirectory(dir=downloads_dir) as tmpdir:
print("Downloading")
local_dir = Path(tmpdir)/model_name
api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
config_dir = local_dir/"config.json"
adapter_config_dir = local_dir/"adapter_config.json"
if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
raise Exception("adapter_config.json is present. If converting LoRA, use GGUF-my-lora.")
print("Download successfully")
result = subprocess.run(["python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16], shell=False, capture_output=True)
print("Converted to f16")
if result.returncode != 0:
raise Exception(f"Error converting to fp16: {result.stderr.decode()}")
imatrix_path = Path(outdir)/"imatrix.dat"
if use_imatrix:
train_data_path = train_data_file.name if train_data_file else "llama.cpp/groups_merged.txt"
if not os.path.isfile(train_data_path):
raise Exception(f"Training data not found: {train_data_path}")
generate_importance_matrix(fp16, train_data_path, imatrix_path)
quant_methods = [imatrix_q_method] if use_imatrix else (q_method if isinstance(q_method, list) else [q_method])
suffix = "imat" if use_imatrix else None
gguf_files = []
for method in quant_methods:
print("Begin quantize")
name = f"{model_name.lower()}-{method.lower()}-{suffix}.gguf" if suffix else f"{model_name.lower()}-{method.lower()}.gguf"
path = str(Path(outdir)/name)
quant_cmd = ["./llama.cpp/llama-quantize", "--imatrix", imatrix_path, fp16, path, method] if use_imatrix else ["./llama.cpp/llama-quantize", fp16, path, method]
result = subprocess.run(quant_cmd, shell=False, capture_output=True)
if result.returncode != 0:
raise Exception(f"Quantization failed ({method}): {result.stderr.decode()}")
size = os.path.getsize(path)/1024/1024/1024
gguf_files.append((name, path, size, method))
print("Quantize successfully!")
suffix_for_repo = f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods)
repo_id = f"{repo_namespace}/{model_name}-{suffix_for_repo}-GGUF"
new_repo_url = api.create_repo(repo_id=repo_id, exist_ok=True, private=private_repo)
try:
card = ModelCard.load(model_id, token=oauth_token.token)
except:
card = ModelCard("")
card.data.tags = (card.data.tags or []) + ["llama-cpp", "gguf-my-repo"]
card.data.base_model = model_id
card.text = dedent(get_llama_cpp_notes(gguf_files, new_repo_url, split_model, model_id))
readme_path = Path(outdir)/"README.md"
card.save(readme_path)
for name, path, _, _ in gguf_files:
if split_model:
split_upload_model(path, outdir, repo_id, oauth_token, split_max_tensors, split_max_size, org_token, export_to_org)
else:
api.upload_file(path_or_fileobj=path, path_in_repo=name, repo_id=repo_id)
if use_imatrix and os.path.isfile(imatrix_path):
api.upload_file(path_or_fileobj=imatrix_path, path_in_repo="imatrix.dat", repo_id=repo_id)
api.upload_file(path_or_fileobj=readme_path, path_in_repo="README.md", repo_id=repo_id)
return (f'<h1>✅ DONE</h1><br/>Repo: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{repo_id}</a>', f"llama{np.random.randint(9)}.png")
except Exception as e:
raise (f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{escape(str(e))}</pre>', "error.png")
css="""/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}
"""
model_id = HuggingfaceHubSearch(
label="Hub Model ID",
placeholder="Search for model id on Huggingface",
search_type="model",
)
export_to_org = gr.Checkbox(
label="Export to Organization Repository",
value=False,
info="If checked, you can select an organization to export to."
)
repo_owner = gr.Dropdown(
choices=["self"],
value="self",
label="Repository Owner",
visible=False
)
org_token = gr.Textbox(
label="Org Access Token",
type="password",
visible=False
)
q_method = gr.Dropdown(
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
label="Quantization Method",
info="GGML quantization type",
value="Q4_K_M",
filterable=False,
visible=True,
multiselect=True
)
imatrix_q_method = gr.Dropdown(
["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
label="Imatrix Quantization Method",
info="GGML imatrix quants type",
value="IQ4_NL",
filterable=False,
visible=False
)
use_imatrix = gr.Checkbox(
value=False,
label="Use Imatrix Quantization",
info="Use importance matrix for quantization."
)
private_repo = gr.Checkbox(
value=False,
label="Private Repo",
info="Create a private repo under your username."
)
train_data_file = gr.File(
label="Training Data File",
file_types=["txt"],
visible=False
)
split_model = gr.Checkbox(
value=False,
label="Split Model",
info="Shard the model using gguf-split."
)
split_max_tensors = gr.Number(
value=256,
label="Max Tensors per File",
info="Maximum number of tensors per file when splitting model.",
visible=False
)
split_max_size = gr.Textbox(
label="Max File Size",
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G",
visible=False
)
iface = gr.Interface(
fn=process_model,
inputs=[
model_id,
q_method,
use_imatrix,
imatrix_q_method,
private_repo,
train_data_file,
split_model,
split_max_tensors,
split_max_size,
export_to_org,
repo_owner,
org_token
],
outputs=[
gr.Markdown(label="Output"),
gr.Image(show_label=False)
],
title="Make your own GGUF Quants — faster than ever before, believe me.",
description="We take your Hugging Face repo — a terrific repo — we quantize it, we package it beautifully, and we give you your very own repo. It's smart. It's efficient. It's huge. You're gonna love it.",
api_name=False
)
with gr.Blocks(css=".gradio-container {overflow-y: auto;}") as demo:
gr.Markdown("Logged in, you must be. Classy, secure, and victorious, it keeps us.")
gr.LoginButton(min_width=250)
export_to_org.change(fn=toggle_repo_owner, inputs=[export_to_org], outputs=[repo_owner, org_token])
split_model.change(fn=lambda sm: (gr.update(visible=sm), gr.update(visible=sm)), inputs=split_model, outputs=[split_max_tensors, split_max_size])
use_imatrix.change(fn=lambda use: (gr.update(visible=not use), gr.update(visible=use), gr.update(visible=use)), inputs=use_imatrix, outputs=[q_method, imatrix_q_method, train_data_file])
iface.render()
def restart_space():
HfApi().restart_space(repo_id="Antigma/quantize-my-repo", token=HF_TOKEN, factory_reboot=True)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.start()
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False) |