Spaces:
Runtime error
Runtime error
Save the model to the data directory
Browse files
app.py
CHANGED
@@ -15,45 +15,29 @@ import numpy as np
|
|
15 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
16 |
CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py"
|
17 |
|
18 |
-
# Get Hugging Face token from environment variable
|
19 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
20 |
-
|
21 |
-
# Set up persistent storage paths
|
22 |
log_dir = "/data/logs"
|
23 |
downloads_dir = "/data/downloads"
|
24 |
outputs_dir = "/data/outputs"
|
25 |
-
models_dir = "/data/models"
|
26 |
-
|
27 |
-
# Create directories if they don't exist
|
28 |
os.makedirs(log_dir, exist_ok=True)
|
29 |
-
os.makedirs(downloads_dir, exist_ok=True)
|
30 |
-
os.makedirs(outputs_dir, exist_ok=True)
|
31 |
-
os.makedirs(models_dir, exist_ok=True)
|
32 |
|
33 |
logging.basicConfig(
|
34 |
filename=os.path.join(log_dir, "app.log"),
|
35 |
level=logging.INFO,
|
36 |
-
format="%(asctime)s - %(levelname)s - %(message)s"
|
37 |
)
|
38 |
|
39 |
logger = logging.getLogger(__name__)
|
40 |
|
41 |
-
|
42 |
-
def get_llama_cpp_notes(
|
43 |
-
gguf_files,
|
44 |
-
new_repo_url,
|
45 |
-
split_model,
|
46 |
-
model_id=None,
|
47 |
-
):
|
48 |
try:
|
49 |
result = subprocess.run(
|
50 |
-
[
|
51 |
stdout=subprocess.PIPE,
|
52 |
stderr=subprocess.PIPE,
|
53 |
check=True,
|
54 |
-
text=True
|
55 |
)
|
56 |
-
version = result.stdout.strip().split(
|
57 |
text = f"""
|
58 |
*Produced by [Antigma Labs](https://antigma.ai)*
|
59 |
## llama.cpp quantization
|
@@ -62,8 +46,7 @@ Original model: https://huggingface.co/{model_id}
|
|
62 |
Run them directly with [llama.cpp](https://github.com/ggml-org/llama.cpp), or any other llama.cpp based project
|
63 |
## Prompt format
|
64 |
```
|
65 |
-
{{system_prompt}}
|
66 |
-
{{prompt}}
|
67 |
```
|
68 |
## Download a file (not the whole branch) from below:
|
69 |
| Filename | Quant type | File Size | Split |
|
@@ -95,51 +78,32 @@ You can either specify a new local-dir (deepseek-ai_DeepSeek-V3-0324-Q8_0) or do
|
|
95 |
|
96 |
|
97 |
def get_repo_namespace(repo_owner, username, user_orgs):
|
98 |
-
if repo_owner ==
|
99 |
return username
|
100 |
for org in user_orgs:
|
101 |
-
if org[
|
102 |
-
return org[
|
103 |
raise ValueError(f"Invalid repo_owner: {repo_owner}")
|
104 |
|
105 |
-
|
106 |
def escape(s: str) -> str:
|
107 |
-
return (
|
108 |
-
s.replace("&", "&")
|
109 |
-
.replace("<", "<")
|
110 |
-
.replace(">", ">")
|
111 |
-
.replace('"', """)
|
112 |
-
.replace("\n", "<br/>")
|
113 |
-
)
|
114 |
-
|
115 |
|
116 |
def toggle_repo_owner(export_to_org, oauth_token: gr.OAuthToken | None):
|
117 |
if oauth_token is None or oauth_token.token is None:
|
118 |
raise gr.Error("You must be logged in to use GGUF-my-repo")
|
119 |
if not export_to_org:
|
120 |
-
return gr.update(visible=False, choices=["self"], value="self"), gr.update(
|
121 |
-
visible=False, value=""
|
122 |
-
)
|
123 |
info = whoami(oauth_token.token)
|
124 |
orgs = [org["name"] for org in info.get("orgs", [])]
|
125 |
-
return gr.update(visible=True, choices=["self"] + orgs, value="self"), gr.update(
|
126 |
-
visible=True
|
127 |
-
)
|
128 |
-
|
129 |
-
|
130 |
def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str):
|
131 |
imatrix_command = [
|
132 |
"./llama.cpp/llama-imatrix",
|
133 |
-
"-m",
|
134 |
-
|
135 |
-
"-
|
136 |
-
|
137 |
-
"-
|
138 |
-
"99",
|
139 |
-
"--output-frequency",
|
140 |
-
"10",
|
141 |
-
"-o",
|
142 |
-
output_path,
|
143 |
]
|
144 |
|
145 |
if not os.path.isfile(model_path):
|
@@ -151,9 +115,7 @@ def generate_importance_matrix(model_path: str, train_data_path: str, output_pat
|
|
151 |
try:
|
152 |
process.wait(timeout=60) # added wait
|
153 |
except subprocess.TimeoutExpired:
|
154 |
-
print(
|
155 |
-
"Imatrix computation timed out. Sending SIGINT to allow graceful termination..."
|
156 |
-
)
|
157 |
process.send_signal(signal.SIGINT)
|
158 |
try:
|
159 |
process.wait(timeout=5) # grace period
|
@@ -163,17 +125,7 @@ def generate_importance_matrix(model_path: str, train_data_path: str, output_pat
|
|
163 |
|
164 |
print("Importance matrix generation completed.")
|
165 |
|
166 |
-
|
167 |
-
def split_upload_model(
|
168 |
-
model_path: str,
|
169 |
-
outdir: str,
|
170 |
-
repo_id: str,
|
171 |
-
oauth_token: gr.OAuthToken | None,
|
172 |
-
split_max_tensors=256,
|
173 |
-
split_max_size=None,
|
174 |
-
org_token=None,
|
175 |
-
export_to_org=False,
|
176 |
-
):
|
177 |
print(f"Model path: {model_path}")
|
178 |
print(f"Output dir: {outdir}")
|
179 |
|
@@ -192,9 +144,7 @@ def split_upload_model(
|
|
192 |
split_cmd.append(str(split_max_tensors))
|
193 |
|
194 |
# args for output
|
195 |
-
model_path_prefix =
|
196 |
-
model_path.split(".")[:-1]
|
197 |
-
) # remove the file extension
|
198 |
split_cmd.append(model_path)
|
199 |
split_cmd.append(model_path_prefix)
|
200 |
|
@@ -213,19 +163,15 @@ def split_upload_model(
|
|
213 |
if os.path.exists(model_path):
|
214 |
os.remove(model_path)
|
215 |
|
216 |
-
model_file_prefix = model_path_prefix.split(
|
217 |
print(f"Model file name prefix: {model_file_prefix}")
|
218 |
-
sharded_model_files = [
|
219 |
-
f
|
220 |
-
for f in os.listdir(outdir)
|
221 |
-
if f.startswith(model_file_prefix) and f.endswith(".gguf")
|
222 |
-
]
|
223 |
if sharded_model_files:
|
224 |
print(f"Sharded model files: {sharded_model_files}")
|
225 |
-
if export_to_org and org_token
|
226 |
-
|
227 |
else:
|
228 |
-
|
229 |
for file in sharded_model_files:
|
230 |
file_path = os.path.join(outdir, file)
|
231 |
print(f"Uploading file: {file_path}")
|
@@ -242,22 +188,9 @@ def split_upload_model(
|
|
242 |
|
243 |
print("Sharded model has been uploaded successfully!")
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
q_method,
|
249 |
-
use_imatrix,
|
250 |
-
imatrix_q_method,
|
251 |
-
private_repo,
|
252 |
-
train_data_file,
|
253 |
-
split_model,
|
254 |
-
split_max_tensors,
|
255 |
-
split_max_size,
|
256 |
-
export_to_org,
|
257 |
-
repo_owner,
|
258 |
-
org_token,
|
259 |
-
oauth_token: gr.OAuthToken | None,
|
260 |
-
):
|
261 |
if oauth_token is None or oauth_token.token is None:
|
262 |
raise gr.Error("You must be logged in to use GGUF-my-repo")
|
263 |
|
@@ -267,176 +200,91 @@ def process_model(
|
|
267 |
if not export_to_org:
|
268 |
repo_owner = "self"
|
269 |
|
|
|
270 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
271 |
-
logger.info(
|
272 |
-
f"Time {current_time}, Username {username}, Model_ID, {model_id}, q_method {','.join(q_method)}"
|
273 |
-
)
|
274 |
|
275 |
repo_namespace = get_repo_namespace(repo_owner, username, user_orgs)
|
276 |
-
model_name = model_id.split(
|
277 |
try:
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
else (q_method if isinstance(q_method, list) else [q_method])
|
352 |
-
)
|
353 |
-
suffix = "imat" if use_imatrix else None
|
354 |
-
|
355 |
-
gguf_files = []
|
356 |
-
for method in quant_methods:
|
357 |
-
name = (
|
358 |
-
f"{model_name.lower()}-{method.lower()}-{suffix}.gguf"
|
359 |
-
if suffix
|
360 |
-
else f"{model_name.lower()}-{method.lower()}.gguf"
|
361 |
-
)
|
362 |
-
path = str(Path(outdir) / name)
|
363 |
-
quant_cmd = (
|
364 |
-
[
|
365 |
-
"./llama.cpp/llama-quantize",
|
366 |
-
"--imatrix",
|
367 |
-
imatrix_path,
|
368 |
-
fp16,
|
369 |
-
path,
|
370 |
-
method,
|
371 |
-
]
|
372 |
-
if use_imatrix
|
373 |
-
else ["./llama.cpp/llama-quantize", fp16, path, method]
|
374 |
-
)
|
375 |
-
result = subprocess.run(quant_cmd, shell=False, capture_output=True)
|
376 |
-
if result.returncode != 0:
|
377 |
-
raise Exception(
|
378 |
-
f"Quantization failed ({method}): {result.stderr.decode()}"
|
379 |
-
)
|
380 |
-
size = os.path.getsize(path) / 1024 / 1024 / 1024
|
381 |
-
gguf_files.append((name, path, size, method))
|
382 |
-
|
383 |
-
suffix_for_repo = (
|
384 |
-
f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods)
|
385 |
-
)
|
386 |
-
repo_id = f"{repo_namespace}/{model_name}-{suffix_for_repo}-GGUF"
|
387 |
-
new_repo_url = api.create_repo(
|
388 |
-
repo_id=repo_id, exist_ok=True, private=private_repo
|
389 |
-
)
|
390 |
-
|
391 |
-
try:
|
392 |
-
card = ModelCard.load(model_id, token=oauth_token.token)
|
393 |
-
except:
|
394 |
-
card = ModelCard("")
|
395 |
-
card.data.tags = (card.data.tags or []) + ["llama-cpp", "gguf-my-repo"]
|
396 |
-
card.data.base_model = model_id
|
397 |
-
card.text = dedent(
|
398 |
-
get_llama_cpp_notes(gguf_files, new_repo_url, split_model, model_id)
|
399 |
-
)
|
400 |
-
readme_path = Path(outdir) / "README.md"
|
401 |
-
card.save(readme_path)
|
402 |
-
for name, path, _, _ in gguf_files:
|
403 |
-
if split_model:
|
404 |
-
split_upload_model(
|
405 |
-
path,
|
406 |
-
outdir,
|
407 |
-
repo_id,
|
408 |
-
oauth_token,
|
409 |
-
split_max_tensors,
|
410 |
-
split_max_size,
|
411 |
-
org_token,
|
412 |
-
export_to_org,
|
413 |
-
)
|
414 |
-
else:
|
415 |
-
api.upload_file(
|
416 |
-
path_or_fileobj=path, path_in_repo=name, repo_id=repo_id
|
417 |
-
)
|
418 |
-
if use_imatrix and os.path.isfile(imatrix_path):
|
419 |
-
api.upload_file(
|
420 |
-
path_or_fileobj=imatrix_path,
|
421 |
-
path_in_repo="imatrix.dat",
|
422 |
-
repo_id=repo_id,
|
423 |
-
)
|
424 |
-
api.upload_file(
|
425 |
-
path_or_fileobj=readme_path, path_in_repo="README.md", repo_id=repo_id
|
426 |
-
)
|
427 |
-
|
428 |
-
return (
|
429 |
-
f'<h1>✅ DONE</h1><br/>Repo: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{repo_id}</a>',
|
430 |
-
f"llama{np.random.randint(9)}.png",
|
431 |
-
)
|
432 |
except Exception as e:
|
433 |
-
raise (
|
434 |
-
f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{escape(str(e))}</pre>',
|
435 |
-
"error.png",
|
436 |
-
)
|
437 |
|
438 |
|
439 |
-
css
|
440 |
.gradio-container {overflow-y: auto;}
|
441 |
"""
|
442 |
model_id = HuggingfaceHubSearch(
|
@@ -448,36 +296,30 @@ model_id = HuggingfaceHubSearch(
|
|
448 |
export_to_org = gr.Checkbox(
|
449 |
label="Export to Organization Repository",
|
450 |
value=False,
|
451 |
-
info="If checked, you can select an organization to export to."
|
452 |
)
|
453 |
|
454 |
repo_owner = gr.Dropdown(
|
455 |
-
choices=["self"],
|
|
|
|
|
|
|
456 |
)
|
457 |
|
458 |
-
org_token = gr.Textbox(
|
|
|
|
|
|
|
|
|
459 |
|
460 |
q_method = gr.Dropdown(
|
461 |
-
[
|
462 |
-
"Q2_K",
|
463 |
-
"Q3_K_S",
|
464 |
-
"Q3_K_M",
|
465 |
-
"Q3_K_L",
|
466 |
-
"Q4_0",
|
467 |
-
"Q4_K_S",
|
468 |
-
"Q4_K_M",
|
469 |
-
"Q5_0",
|
470 |
-
"Q5_K_S",
|
471 |
-
"Q5_K_M",
|
472 |
-
"Q6_K",
|
473 |
-
"Q8_0",
|
474 |
-
],
|
475 |
label="Quantization Method",
|
476 |
info="GGML quantization type",
|
477 |
value="Q4_K_M",
|
478 |
filterable=False,
|
479 |
visible=True,
|
480 |
-
multiselect=True
|
481 |
)
|
482 |
|
483 |
imatrix_q_method = gr.Dropdown(
|
@@ -486,36 +328,44 @@ imatrix_q_method = gr.Dropdown(
|
|
486 |
info="GGML imatrix quants type",
|
487 |
value="IQ4_NL",
|
488 |
filterable=False,
|
489 |
-
visible=False
|
490 |
)
|
491 |
|
492 |
use_imatrix = gr.Checkbox(
|
493 |
value=False,
|
494 |
label="Use Imatrix Quantization",
|
495 |
-
info="Use importance matrix for quantization."
|
496 |
)
|
497 |
|
498 |
private_repo = gr.Checkbox(
|
499 |
-
value=False,
|
|
|
|
|
500 |
)
|
501 |
|
502 |
-
train_data_file = gr.File(
|
|
|
|
|
|
|
|
|
503 |
|
504 |
split_model = gr.Checkbox(
|
505 |
-
value=False,
|
|
|
|
|
506 |
)
|
507 |
|
508 |
split_max_tensors = gr.Number(
|
509 |
value=256,
|
510 |
label="Max Tensors per File",
|
511 |
info="Maximum number of tensors per file when splitting model.",
|
512 |
-
visible=False
|
513 |
)
|
514 |
|
515 |
split_max_size = gr.Textbox(
|
516 |
label="Max File Size",
|
517 |
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G",
|
518 |
-
visible=False
|
519 |
)
|
520 |
|
521 |
iface = gr.Interface(
|
@@ -532,47 +382,35 @@ iface = gr.Interface(
|
|
532 |
split_max_size,
|
533 |
export_to_org,
|
534 |
repo_owner,
|
535 |
-
org_token
|
|
|
|
|
|
|
|
|
536 |
],
|
537 |
-
outputs=[gr.Markdown(label="Output"), gr.Image(show_label=False)],
|
538 |
title="Make your own GGUF Quants — faster than ever before, believe me.",
|
539 |
description="We take your Hugging Face repo — a terrific repo — we quantize it, we package it beautifully, and we give you your very own repo. It's smart. It's efficient. It's huge. You're gonna love it.",
|
540 |
-
api_name=False
|
541 |
)
|
542 |
with gr.Blocks(css=".gradio-container {overflow-y: auto;}") as demo:
|
543 |
gr.Markdown("Logged in, you must be. Classy, secure, and victorious, it keeps us.")
|
544 |
gr.LoginButton(min_width=250)
|
545 |
|
546 |
-
|
547 |
-
|
548 |
-
)
|
549 |
-
|
550 |
-
split_model.change(
|
551 |
-
|
552 |
-
inputs=split_model,
|
553 |
-
outputs=[split_max_tensors, split_max_size],
|
554 |
-
)
|
555 |
-
use_imatrix.change(
|
556 |
-
fn=lambda use: (
|
557 |
-
gr.update(visible=not use),
|
558 |
-
gr.update(visible=use),
|
559 |
-
gr.update(visible=use),
|
560 |
-
),
|
561 |
-
inputs=use_imatrix,
|
562 |
-
outputs=[q_method, imatrix_q_method, train_data_file],
|
563 |
-
)
|
564 |
|
565 |
iface.render()
|
566 |
|
567 |
|
568 |
def restart_space():
|
569 |
-
HfApi().restart_space(
|
570 |
-
repo_id="Antigma/quantize-my-repo", token=HF_TOKEN, factory_reboot=True
|
571 |
-
)
|
572 |
-
|
573 |
|
574 |
scheduler = BackgroundScheduler()
|
575 |
scheduler.add_job(restart_space, "interval", seconds=21600)
|
576 |
scheduler.start()
|
577 |
|
578 |
-
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)
|
|
|
15 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
16 |
CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py"
|
17 |
|
|
|
|
|
|
|
|
|
18 |
log_dir = "/data/logs"
|
19 |
downloads_dir = "/data/downloads"
|
20 |
outputs_dir = "/data/outputs"
|
|
|
|
|
|
|
21 |
os.makedirs(log_dir, exist_ok=True)
|
|
|
|
|
|
|
22 |
|
23 |
logging.basicConfig(
|
24 |
filename=os.path.join(log_dir, "app.log"),
|
25 |
level=logging.INFO,
|
26 |
+
format="%(asctime)s - %(levelname)s - %(message)s"
|
27 |
)
|
28 |
|
29 |
logger = logging.getLogger(__name__)
|
30 |
|
31 |
+
def get_llama_cpp_notes(gguf_files, new_repo_url, split_model, model_id = None,):
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
try:
|
33 |
result = subprocess.run(
|
34 |
+
['git', '-C', './llama.cpp', 'describe', '--tags', '--always'],
|
35 |
stdout=subprocess.PIPE,
|
36 |
stderr=subprocess.PIPE,
|
37 |
check=True,
|
38 |
+
text=True
|
39 |
)
|
40 |
+
version = result.stdout.strip().split('-')[0]
|
41 |
text = f"""
|
42 |
*Produced by [Antigma Labs](https://antigma.ai)*
|
43 |
## llama.cpp quantization
|
|
|
46 |
Run them directly with [llama.cpp](https://github.com/ggml-org/llama.cpp), or any other llama.cpp based project
|
47 |
## Prompt format
|
48 |
```
|
49 |
+
<|begin▁of▁sentence|>{{system_prompt}}<|User|>{{prompt}}<|Assistant|><|end▁of▁sentence|><|Assistant|>
|
|
|
50 |
```
|
51 |
## Download a file (not the whole branch) from below:
|
52 |
| Filename | Quant type | File Size | Split |
|
|
|
78 |
|
79 |
|
80 |
def get_repo_namespace(repo_owner, username, user_orgs):
|
81 |
+
if repo_owner == 'self':
|
82 |
return username
|
83 |
for org in user_orgs:
|
84 |
+
if org['name'] == repo_owner:
|
85 |
+
return org['name']
|
86 |
raise ValueError(f"Invalid repo_owner: {repo_owner}")
|
87 |
|
|
|
88 |
def escape(s: str) -> str:
|
89 |
+
return s.replace("&", "&").replace("<", "<").replace(">", ">").replace('"', """).replace("\n", "<br/>")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
def toggle_repo_owner(export_to_org, oauth_token: gr.OAuthToken | None):
|
92 |
if oauth_token is None or oauth_token.token is None:
|
93 |
raise gr.Error("You must be logged in to use GGUF-my-repo")
|
94 |
if not export_to_org:
|
95 |
+
return gr.update(visible=False, choices=["self"], value="self"), gr.update(visible=False, value="")
|
|
|
|
|
96 |
info = whoami(oauth_token.token)
|
97 |
orgs = [org["name"] for org in info.get("orgs", [])]
|
98 |
+
return gr.update(visible=True, choices=["self"] + orgs, value="self"), gr.update(visible=True)
|
|
|
|
|
|
|
|
|
99 |
def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str):
|
100 |
imatrix_command = [
|
101 |
"./llama.cpp/llama-imatrix",
|
102 |
+
"-m", model_path,
|
103 |
+
"-f", train_data_path,
|
104 |
+
"-ngl", "99",
|
105 |
+
"--output-frequency", "10",
|
106 |
+
"-o", output_path,
|
|
|
|
|
|
|
|
|
|
|
107 |
]
|
108 |
|
109 |
if not os.path.isfile(model_path):
|
|
|
115 |
try:
|
116 |
process.wait(timeout=60) # added wait
|
117 |
except subprocess.TimeoutExpired:
|
118 |
+
print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...")
|
|
|
|
|
119 |
process.send_signal(signal.SIGINT)
|
120 |
try:
|
121 |
process.wait(timeout=5) # grace period
|
|
|
125 |
|
126 |
print("Importance matrix generation completed.")
|
127 |
|
128 |
+
def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None, org_token=None, export_to_org=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
print(f"Model path: {model_path}")
|
130 |
print(f"Output dir: {outdir}")
|
131 |
|
|
|
144 |
split_cmd.append(str(split_max_tensors))
|
145 |
|
146 |
# args for output
|
147 |
+
model_path_prefix = '.'.join(model_path.split('.')[:-1]) # remove the file extension
|
|
|
|
|
148 |
split_cmd.append(model_path)
|
149 |
split_cmd.append(model_path_prefix)
|
150 |
|
|
|
163 |
if os.path.exists(model_path):
|
164 |
os.remove(model_path)
|
165 |
|
166 |
+
model_file_prefix = model_path_prefix.split('/')[-1]
|
167 |
print(f"Model file name prefix: {model_file_prefix}")
|
168 |
+
sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")]
|
|
|
|
|
|
|
|
|
169 |
if sharded_model_files:
|
170 |
print(f"Sharded model files: {sharded_model_files}")
|
171 |
+
if export_to_org and org_token!="":
|
172 |
+
api = HfApi(token = org_token)
|
173 |
else:
|
174 |
+
api = HfApi(token=oauth_token.token)
|
175 |
for file in sharded_model_files:
|
176 |
file_path = os.path.join(outdir, file)
|
177 |
print(f"Uploading file: {file_path}")
|
|
|
188 |
|
189 |
print("Sharded model has been uploaded successfully!")
|
190 |
|
191 |
+
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo,
|
192 |
+
train_data_file, split_model, split_max_tensors, split_max_size,
|
193 |
+
export_to_org, repo_owner, org_token, oauth_token: gr.OAuthToken | None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
if oauth_token is None or oauth_token.token is None:
|
195 |
raise gr.Error("You must be logged in to use GGUF-my-repo")
|
196 |
|
|
|
200 |
if not export_to_org:
|
201 |
repo_owner = "self"
|
202 |
|
203 |
+
|
204 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
205 |
+
logger.info(f"Time {current_time}, Username {username}, Model_ID, {model_id}, q_method {','.join(q_method)}")
|
|
|
|
|
206 |
|
207 |
repo_namespace = get_repo_namespace(repo_owner, username, user_orgs)
|
208 |
+
model_name = model_id.split('/')[-1]
|
209 |
try:
|
210 |
+
api_token = org_token if (export_to_org and org_token!="") else oauth_token.token
|
211 |
+
api = HfApi(token=api_token)
|
212 |
+
|
213 |
+
dl_pattern = ["*.md", "*.json", "*.model"]
|
214 |
+
pattern = "*.safetensors" if any(
|
215 |
+
f.path.endswith(".safetensors")
|
216 |
+
for f in api.list_repo_tree(repo_id=model_id, recursive=True)
|
217 |
+
) else "*.bin"
|
218 |
+
dl_pattern += [pattern]
|
219 |
+
|
220 |
+
os.makedirs(downloads_dir, exist_ok=True)
|
221 |
+
os.makedirs(outputs_dir, exist_ok=True)
|
222 |
+
|
223 |
+
with tempfile.TemporaryDirectory(dir=outputs_dir) as outdir:
|
224 |
+
fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf")
|
225 |
+
|
226 |
+
with tempfile.TemporaryDirectory(dir=downloads_dir) as tmpdir:
|
227 |
+
local_dir = Path(tmpdir)/model_name
|
228 |
+
api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
229 |
+
|
230 |
+
config_dir = local_dir/"config.json"
|
231 |
+
adapter_config_dir = local_dir/"adapter_config.json"
|
232 |
+
if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
|
233 |
+
raise Exception("adapter_config.json is present. If converting LoRA, use GGUF-my-lora.")
|
234 |
+
|
235 |
+
result = subprocess.run(["python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16], shell=False, capture_output=True)
|
236 |
+
if result.returncode != 0:
|
237 |
+
raise Exception(f"Error converting to fp16: {result.stderr.decode()}")
|
238 |
+
|
239 |
+
imatrix_path = Path(outdir)/"imatrix.dat"
|
240 |
+
if use_imatrix:
|
241 |
+
train_data_path = train_data_file.name if train_data_file else "llama.cpp/groups_merged.txt"
|
242 |
+
if not os.path.isfile(train_data_path):
|
243 |
+
raise Exception(f"Training data not found: {train_data_path}")
|
244 |
+
generate_importance_matrix(fp16, train_data_path, imatrix_path)
|
245 |
+
|
246 |
+
quant_methods = [imatrix_q_method] if use_imatrix else (q_method if isinstance(q_method, list) else [q_method])
|
247 |
+
suffix = "imat" if use_imatrix else None
|
248 |
+
|
249 |
+
gguf_files = []
|
250 |
+
for method in quant_methods:
|
251 |
+
name = f"{model_name.lower()}-{method.lower()}-{suffix}.gguf" if suffix else f"{model_name.lower()}-{method.lower()}.gguf"
|
252 |
+
path = str(Path(outdir)/name)
|
253 |
+
quant_cmd = ["./llama.cpp/llama-quantize", "--imatrix", imatrix_path, fp16, path, method] if use_imatrix else ["./llama.cpp/llama-quantize", fp16, path, method]
|
254 |
+
result = subprocess.run(quant_cmd, shell=False, capture_output=True)
|
255 |
+
if result.returncode != 0:
|
256 |
+
raise Exception(f"Quantization failed ({method}): {result.stderr.decode()}")
|
257 |
+
size = os.path.getsize(path)/1024/1024/1024
|
258 |
+
gguf_files.append((name, path, size, method))
|
259 |
+
|
260 |
+
suffix_for_repo = f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods)
|
261 |
+
repo_id = f"{repo_namespace}/{model_name}-{suffix_for_repo}-GGUF"
|
262 |
+
new_repo_url = api.create_repo(repo_id=repo_id, exist_ok=True, private=private_repo)
|
263 |
+
|
264 |
+
try:
|
265 |
+
card = ModelCard.load(model_id, token=oauth_token.token)
|
266 |
+
except:
|
267 |
+
card = ModelCard("")
|
268 |
+
card.data.tags = (card.data.tags or []) + ["llama-cpp", "gguf-my-repo"]
|
269 |
+
card.data.base_model = model_id
|
270 |
+
card.text = dedent(get_llama_cpp_notes(gguf_files, new_repo_url, split_model, model_id))
|
271 |
+
readme_path = Path(outdir)/"README.md"
|
272 |
+
card.save(readme_path)
|
273 |
+
for name, path, _, _ in gguf_files:
|
274 |
+
if split_model:
|
275 |
+
split_upload_model(path, outdir, repo_id, oauth_token, split_max_tensors, split_max_size, org_token, export_to_org)
|
276 |
+
else:
|
277 |
+
api.upload_file(path_or_fileobj=path, path_in_repo=name, repo_id=repo_id)
|
278 |
+
if use_imatrix and os.path.isfile(imatrix_path):
|
279 |
+
api.upload_file(path_or_fileobj=imatrix_path, path_in_repo="imatrix.dat", repo_id=repo_id)
|
280 |
+
api.upload_file(path_or_fileobj=readme_path, path_in_repo="README.md", repo_id=repo_id)
|
281 |
+
|
282 |
+
return (f'<h1>✅ DONE</h1><br/>Repo: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{repo_id}</a>', f"llama{np.random.randint(9)}.png")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
except Exception as e:
|
284 |
+
raise (f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{escape(str(e))}</pre>', "error.png")
|
|
|
|
|
|
|
285 |
|
286 |
|
287 |
+
css="""/* Custom CSS to allow scrolling */
|
288 |
.gradio-container {overflow-y: auto;}
|
289 |
"""
|
290 |
model_id = HuggingfaceHubSearch(
|
|
|
296 |
export_to_org = gr.Checkbox(
|
297 |
label="Export to Organization Repository",
|
298 |
value=False,
|
299 |
+
info="If checked, you can select an organization to export to."
|
300 |
)
|
301 |
|
302 |
repo_owner = gr.Dropdown(
|
303 |
+
choices=["self"],
|
304 |
+
value="self",
|
305 |
+
label="Repository Owner",
|
306 |
+
visible=False
|
307 |
)
|
308 |
|
309 |
+
org_token = gr.Textbox(
|
310 |
+
label="Org Access Token",
|
311 |
+
type="password",
|
312 |
+
visible=False
|
313 |
+
)
|
314 |
|
315 |
q_method = gr.Dropdown(
|
316 |
+
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
label="Quantization Method",
|
318 |
info="GGML quantization type",
|
319 |
value="Q4_K_M",
|
320 |
filterable=False,
|
321 |
visible=True,
|
322 |
+
multiselect=True
|
323 |
)
|
324 |
|
325 |
imatrix_q_method = gr.Dropdown(
|
|
|
328 |
info="GGML imatrix quants type",
|
329 |
value="IQ4_NL",
|
330 |
filterable=False,
|
331 |
+
visible=False
|
332 |
)
|
333 |
|
334 |
use_imatrix = gr.Checkbox(
|
335 |
value=False,
|
336 |
label="Use Imatrix Quantization",
|
337 |
+
info="Use importance matrix for quantization."
|
338 |
)
|
339 |
|
340 |
private_repo = gr.Checkbox(
|
341 |
+
value=False,
|
342 |
+
label="Private Repo",
|
343 |
+
info="Create a private repo under your username."
|
344 |
)
|
345 |
|
346 |
+
train_data_file = gr.File(
|
347 |
+
label="Training Data File",
|
348 |
+
file_types=["txt"],
|
349 |
+
visible=False
|
350 |
+
)
|
351 |
|
352 |
split_model = gr.Checkbox(
|
353 |
+
value=False,
|
354 |
+
label="Split Model",
|
355 |
+
info="Shard the model using gguf-split."
|
356 |
)
|
357 |
|
358 |
split_max_tensors = gr.Number(
|
359 |
value=256,
|
360 |
label="Max Tensors per File",
|
361 |
info="Maximum number of tensors per file when splitting model.",
|
362 |
+
visible=False
|
363 |
)
|
364 |
|
365 |
split_max_size = gr.Textbox(
|
366 |
label="Max File Size",
|
367 |
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G",
|
368 |
+
visible=False
|
369 |
)
|
370 |
|
371 |
iface = gr.Interface(
|
|
|
382 |
split_max_size,
|
383 |
export_to_org,
|
384 |
repo_owner,
|
385 |
+
org_token
|
386 |
+
],
|
387 |
+
outputs=[
|
388 |
+
gr.Markdown(label="Output"),
|
389 |
+
gr.Image(show_label=False)
|
390 |
],
|
|
|
391 |
title="Make your own GGUF Quants — faster than ever before, believe me.",
|
392 |
description="We take your Hugging Face repo — a terrific repo — we quantize it, we package it beautifully, and we give you your very own repo. It's smart. It's efficient. It's huge. You're gonna love it.",
|
393 |
+
api_name=False
|
394 |
)
|
395 |
with gr.Blocks(css=".gradio-container {overflow-y: auto;}") as demo:
|
396 |
gr.Markdown("Logged in, you must be. Classy, secure, and victorious, it keeps us.")
|
397 |
gr.LoginButton(min_width=250)
|
398 |
|
399 |
+
|
400 |
+
|
401 |
+
export_to_org.change(fn=toggle_repo_owner, inputs=[export_to_org], outputs=[repo_owner, org_token])
|
402 |
+
|
403 |
+
split_model.change(fn=lambda sm: (gr.update(visible=sm), gr.update(visible=sm)), inputs=split_model, outputs=[split_max_tensors, split_max_size])
|
404 |
+
use_imatrix.change(fn=lambda use: (gr.update(visible=not use), gr.update(visible=use), gr.update(visible=use)), inputs=use_imatrix, outputs=[q_method, imatrix_q_method, train_data_file])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
|
406 |
iface.render()
|
407 |
|
408 |
|
409 |
def restart_space():
|
410 |
+
HfApi().restart_space(repo_id="Antigma/quantize-my-repo", token=HF_TOKEN, factory_reboot=True)
|
|
|
|
|
|
|
411 |
|
412 |
scheduler = BackgroundScheduler()
|
413 |
scheduler.add_job(restart_space, "interval", seconds=21600)
|
414 |
scheduler.start()
|
415 |
|
416 |
+
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)
|