AnshulS's picture
Update app.py
9e9d5ee verified
raw
history blame
1.22 kB
import pandas as pd
import gradio as gr
from retriever import get_relevant_passages
from reranker import rerank
# Load and clean CSV
df = pd.read_csv("assessments.csv")
def clean_df(df):
df = df.copy()
df["url"] = "https://www.shl.com" + df.iloc[:, 1]
df["remote_support"] = df.iloc[:, 2].map(lambda x: "Yes" if x == "T" else "No")
df["adaptive_support"] = df.iloc[:, 3].map(lambda x: "Yes" if x == "T" else "No")
df["test_type"] = df.iloc[:, 4].astype(str).str.split("\\n")
df["description"] = df.iloc[:, 5]
df["duration"] = df.iloc[:, 8].astype(str).str.extract(r'(\d+)').astype(float)
return df[["url", "adaptive_support", "remote_support", "description", "duration", "test_type"]]
df_clean = clean_df(df)
def recommend(query):
top_k_df = get_relevant_passages(query, df_clean, top_k=20)
candidates = top_k_df.to_dict(orient="records")
return rerank(query, candidates)
iface = gr.Interface(
fn=recommend,
inputs=gr.Textbox(label="Enter Job Description", lines=4),
outputs="json",
title="SHL Assessment Recommender",
description="Paste a job description to get the most relevant SHL assessments."
)
if __name__ == "__main__":
iface.launch()