import pandas as pd import gradio as gr from retriever import get_relevant_passages from reranker import rerank # Load and clean CSV df = pd.read_csv("assessments.csv") def clean_df(df): df = df.copy() df["url"] = "https://www.shl.com" + df.iloc[:, 1] df["remote_support"] = df.iloc[:, 2].map(lambda x: "Yes" if x == "T" else "No") df["adaptive_support"] = df.iloc[:, 3].map(lambda x: "Yes" if x == "T" else "No") df["test_type"] = df.iloc[:, 4].astype(str).str.split("\\n") df["description"] = df.iloc[:, 5] df["duration"] = df.iloc[:, 8].astype(str).str.extract(r'(\d+)').astype(float) return df[["url", "adaptive_support", "remote_support", "description", "duration", "test_type"]] df_clean = clean_df(df) def recommend(query): top_k_df = get_relevant_passages(query, df_clean, top_k=20) candidates = top_k_df.to_dict(orient="records") return rerank(query, candidates) iface = gr.Interface( fn=recommend, inputs=gr.Textbox(label="Enter Job Description", lines=4), outputs="json", title="SHL Assessment Recommender", description="Paste a job description to get the most relevant SHL assessments." ) if __name__ == "__main__": iface.launch()