Anne31415's picture
Update app.py
35fb3be
raw
history blame
6.27 kB
import streamlit as st
from dotenv import load_dotenv
import pickle
from huggingface_hub import Repository
from PyPDF2 import PdfReader
from streamlit_extras.add_vertical_space import add_vertical_space
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import OpenAI
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback
import os
# Step 1: Clone the Dataset Repository
repo = Repository(
local_dir="Private_Book", # Local directory to clone the repository
repo_type="dataset", # Specify that this is a dataset repository
clone_from="Anne31415/Private_Book", # Replace with your repository URL
token=os.environ["HUB_TOKEN"] # Use the secret token to authenticate
)
repo.git_pull() # Pull the latest changes (if any)
# Step 2: Load the PDF File
pdf_file_path = "Private_Book/KOMBI_all2.pdf" # Replace with your PDF file path
def cloud_button(label, query, key=None, color=None, overlap=30):
button_id = f"cloud-button-{key or label}".replace(" ", "-")
color_class = f"color-{color}" if color else ""
num_circles = max(3, min(35, len(label) // 4))
circle_size = 60
circles_html = ''.join([
f'<div class="circle {color_class}" style="margin-right: -{overlap}px;"></div>'
for _ in range(num_circles)
])
circles_html += f'<div class="circle-text">{label}</div>'
cloud_button_html = f"""
<div class="cloud" id="{button_id}" style="margin-bottom: 20px; cursor: pointer;">
<div class="wrapper {color_class}">
{circles_html}
</div>
</div>
<script>
document.getElementById("{button_id}").onclick = function() {{
const query = "{query}";
const label = "{label}";
const button_id = "{button_id}";
window.parent.postMessage({{
'isStreamlitMessage': true,
'type': 'streamlit:setComponentValue',
'value': {{'label': label, 'query': query, 'button_id': button_id}},
'key': 'button_clicked'
}}, '*');
}};
</script>
"""
st.markdown(cloud_button_html, unsafe_allow_html=True)
def display_chat_history(chat_history):
for sender, msg, _ in chat_history:
background_color = "#FFA07A" if sender == "User" else "#caf"
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{sender}: {msg}</div>", unsafe_allow_html=True)
def load_pdf(file_path):
pdf_reader = PdfReader(file_path)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text=text)
store_name, _ = os.path.splitext(os.path.basename(file_path))
if os.path.exists(f"{store_name}.pkl"):
with open(f"{store_name}.pkl", "rb") as f:
VectorStore = pickle.load(f)
else:
embeddings = OpenAIEmbeddings()
VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
with open(f"{store_name}.pkl", "wb") as f:
pickle.dump(VectorStore, f)
return VectorStore
def load_chatbot():
return load_qa_chain(llm=OpenAI(), chain_type="stuff")
def main():
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
st.title("Welcome to BinDocs ChatBot! 🤖")
pdf_path = pdf_file_path
if not os.path.exists(pdf_path):
st.error("File not found. Please check the file path.")
return
if "chat_history" not in st.session_state:
st.session_state['chat_history'] = []
display_chat_history(st.session_state['chat_history'])
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
st.write("<!-- End Spacer -->", unsafe_allow_html=True)
if pdf_path is not None:
query = st.text_input("Ask questions about your PDF file (in any preferred language):", key="user_query")
cloud_buttons = [
("Was genau ist ein Belegarzt?", "Was genau ist ein Belegarzt?", "1"),
("Wofür wird die Alpha-ID verwendet?", "Wofür wird die Alpha-ID verwendet?", "2"),
# Add more buttons as needed
]
for label, query, color in cloud_buttons:
cloud_button(label, query, color=color)
user_input = st.empty()
if "button_clicked" in st.session_state:
button_info = st.session_state["button_clicked"]
if button_info:
st.write(f"You clicked: {button_info['label']}")
st.write(f"Query: {button_info['query']}")
# Handle the button click as needed
# For example, you can call a function to process the query
# process_query(button_info['query'])
st.session_state["button_clicked"] = None # Reset after handling
if st.button("Ask"):
user_input = st.session_state.user_query
handle_query(user_input, pdf_path)
def handle_query(query, pdf_path):
if not query:
st.warning("Please enter a query.")
return
st.session_state['chat_history'].append(("User", query, "new"))
loading_message = st.empty()
loading_message.text('Bot is thinking...')
VectorStore = load_pdf(pdf_path)
chain = load_chatbot()
docs = VectorStore.similarity_search(query=query, k=3)
with get_openai_callback() as cb:
response = chain.run(input_documents=docs, question=query)
st.session_state['chat_history'].append(("Bot", response, "new"))
display_chat_history(st.session_state['chat_history'][-2:])
loading_message.empty()
st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']]
if __name__ == "__main__":
main()