Spaces:
Running
Running
import streamlit as st | |
from dotenv import load_dotenv | |
import pickle | |
from huggingface_hub import Repository | |
from PyPDF2 import PdfReader | |
from streamlit_extras.add_vertical_space import add_vertical_space | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.llms import OpenAI | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.callbacks import get_openai_callback | |
import os | |
# Step 1: Clone the Dataset Repository | |
repo = Repository( | |
local_dir="Private_Book", # Local directory to clone the repository | |
repo_type="dataset", # Specify that this is a dataset repository | |
clone_from="Anne31415/Private_Book", # Replace with your repository URL | |
token=os.environ["HUB_TOKEN"] # Use the secret token to authenticate | |
) | |
repo.git_pull() # Pull the latest changes (if any) | |
# Step 2: Load the PDF File | |
pdf_file_path = "Private_Book/KOMBI_all2.pdf" # Replace with your PDF file path | |
def cloud_button(label, query, key=None, color=None, overlap=30): | |
button_id = f"cloud-button-{key or label}".replace(" ", "-") | |
color_class = f"color-{color}" if color else "" | |
num_circles = max(3, min(35, len(label) // 4)) | |
circle_size = 60 | |
circles_html = ''.join([ | |
f'<div class="circle {color_class}" style="margin-right: -{overlap}px;"></div>' | |
for _ in range(num_circles) | |
]) | |
circles_html += f'<div class="circle-text">{label}</div>' | |
cloud_button_html = f""" | |
<div class="cloud" id="{button_id}" style="margin-bottom: 20px; cursor: pointer;"> | |
<div class="wrapper {color_class}"> | |
{circles_html} | |
</div> | |
</div> | |
<script> | |
document.getElementById("{button_id}").onclick = function() {{ | |
const query = "{query}"; | |
const label = "{label}"; | |
const button_id = "{button_id}"; | |
window.parent.postMessage({{ | |
'isStreamlitMessage': true, | |
'type': 'streamlit:setComponentValue', | |
'value': {{'label': label, 'query': query, 'button_id': button_id}}, | |
'key': 'button_clicked' | |
}}, '*'); | |
}}; | |
</script> | |
""" | |
st.markdown(cloud_button_html, unsafe_allow_html=True) | |
def display_chat_history(chat_history): | |
for sender, msg, _ in chat_history: | |
background_color = "#FFA07A" if sender == "User" else "#caf" | |
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{sender}: {msg}</div>", unsafe_allow_html=True) | |
def load_pdf(file_path): | |
pdf_reader = PdfReader(file_path) | |
text = "" | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text=text) | |
store_name, _ = os.path.splitext(os.path.basename(file_path)) | |
if os.path.exists(f"{store_name}.pkl"): | |
with open(f"{store_name}.pkl", "rb") as f: | |
VectorStore = pickle.load(f) | |
else: | |
embeddings = OpenAIEmbeddings() | |
VectorStore = FAISS.from_texts(chunks, embedding=embeddings) | |
with open(f"{store_name}.pkl", "wb") as f: | |
pickle.dump(VectorStore, f) | |
return VectorStore | |
def load_chatbot(): | |
return load_qa_chain(llm=OpenAI(), chain_type="stuff") | |
def main(): | |
hide_streamlit_style = """ | |
<style> | |
#MainMenu {visibility: hidden;} | |
footer {visibility: hidden;} | |
</style> | |
""" | |
st.markdown(hide_streamlit_style, unsafe_allow_html=True) | |
st.title("Welcome to BinDocs ChatBot! 🤖") | |
pdf_path = pdf_file_path | |
if not os.path.exists(pdf_path): | |
st.error("File not found. Please check the file path.") | |
return | |
if "chat_history" not in st.session_state: | |
st.session_state['chat_history'] = [] | |
display_chat_history(st.session_state['chat_history']) | |
st.write("<!-- Start Spacer -->", unsafe_allow_html=True) | |
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True) | |
st.write("<!-- End Spacer -->", unsafe_allow_html=True) | |
if pdf_path is not None: | |
query = st.text_input("Ask questions about your PDF file (in any preferred language):", key="user_query") | |
cloud_buttons = [ | |
("Was genau ist ein Belegarzt?", "Was genau ist ein Belegarzt?", "1"), | |
("Wofür wird die Alpha-ID verwendet?", "Wofür wird die Alpha-ID verwendet?", "2"), | |
# Add more buttons as needed | |
] | |
for label, query, color in cloud_buttons: | |
cloud_button(label, query, color=color) | |
user_input = st.empty() | |
if "button_clicked" in st.session_state: | |
button_info = st.session_state["button_clicked"] | |
if button_info: | |
st.write(f"You clicked: {button_info['label']}") | |
st.write(f"Query: {button_info['query']}") | |
# Handle the button click as needed | |
# For example, you can call a function to process the query | |
# process_query(button_info['query']) | |
st.session_state["button_clicked"] = None # Reset after handling | |
if st.button("Ask"): | |
user_input = st.session_state.user_query | |
handle_query(user_input, pdf_path) | |
def handle_query(query, pdf_path): | |
if not query: | |
st.warning("Please enter a query.") | |
return | |
st.session_state['chat_history'].append(("User", query, "new")) | |
loading_message = st.empty() | |
loading_message.text('Bot is thinking...') | |
VectorStore = load_pdf(pdf_path) | |
chain = load_chatbot() | |
docs = VectorStore.similarity_search(query=query, k=3) | |
with get_openai_callback() as cb: | |
response = chain.run(input_documents=docs, question=query) | |
st.session_state['chat_history'].append(("Bot", response, "new")) | |
display_chat_history(st.session_state['chat_history'][-2:]) | |
loading_message.empty() | |
st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']] | |
if __name__ == "__main__": | |
main() |