Spaces:
Running
Running
File size: 6,269 Bytes
12d891e 27dbdfd 7c95914 12d891e 7c95914 27dbdfd 7c95914 27dbdfd d796104 a56964f d47dd8a 35fb3be 13c5f18 976f538 5f51ac1 744d5b3 1110c74 902d85a 4e0fb75 1110c74 2c1ff12 d2d9c5f a48e7a7 35fb3be 5efe4f5 902d85a 5efe4f5 a48e7a7 35fb3be d47dd8a 35fb3be d47dd8a 35fb3be d47dd8a a48e7a7 89ad1c6 35fb3be a56964f 0cba2f4 6755ee0 12d891e 6741ab6 12d891e 191e71b 12d891e d47dd8a 27dbdfd b6bac0f 7c95914 a407d5b a152229 7c95914 a56964f 6741ab6 a56964f 6741ab6 35f13e1 35fb3be 35f13e1 6741ab6 35f13e1 6741ab6 35f13e1 27dbdfd 10a642d 6741ab6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import streamlit as st
from dotenv import load_dotenv
import pickle
from huggingface_hub import Repository
from PyPDF2 import PdfReader
from streamlit_extras.add_vertical_space import add_vertical_space
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import OpenAI
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback
import os
# Step 1: Clone the Dataset Repository
repo = Repository(
local_dir="Private_Book", # Local directory to clone the repository
repo_type="dataset", # Specify that this is a dataset repository
clone_from="Anne31415/Private_Book", # Replace with your repository URL
token=os.environ["HUB_TOKEN"] # Use the secret token to authenticate
)
repo.git_pull() # Pull the latest changes (if any)
# Step 2: Load the PDF File
pdf_file_path = "Private_Book/KOMBI_all2.pdf" # Replace with your PDF file path
def cloud_button(label, query, key=None, color=None, overlap=30):
button_id = f"cloud-button-{key or label}".replace(" ", "-")
color_class = f"color-{color}" if color else ""
num_circles = max(3, min(35, len(label) // 4))
circle_size = 60
circles_html = ''.join([
f'<div class="circle {color_class}" style="margin-right: -{overlap}px;"></div>'
for _ in range(num_circles)
])
circles_html += f'<div class="circle-text">{label}</div>'
cloud_button_html = f"""
<div class="cloud" id="{button_id}" style="margin-bottom: 20px; cursor: pointer;">
<div class="wrapper {color_class}">
{circles_html}
</div>
</div>
<script>
document.getElementById("{button_id}").onclick = function() {{
const query = "{query}";
const label = "{label}";
const button_id = "{button_id}";
window.parent.postMessage({{
'isStreamlitMessage': true,
'type': 'streamlit:setComponentValue',
'value': {{'label': label, 'query': query, 'button_id': button_id}},
'key': 'button_clicked'
}}, '*');
}};
</script>
"""
st.markdown(cloud_button_html, unsafe_allow_html=True)
def display_chat_history(chat_history):
for sender, msg, _ in chat_history:
background_color = "#FFA07A" if sender == "User" else "#caf"
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{sender}: {msg}</div>", unsafe_allow_html=True)
def load_pdf(file_path):
pdf_reader = PdfReader(file_path)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text=text)
store_name, _ = os.path.splitext(os.path.basename(file_path))
if os.path.exists(f"{store_name}.pkl"):
with open(f"{store_name}.pkl", "rb") as f:
VectorStore = pickle.load(f)
else:
embeddings = OpenAIEmbeddings()
VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
with open(f"{store_name}.pkl", "wb") as f:
pickle.dump(VectorStore, f)
return VectorStore
def load_chatbot():
return load_qa_chain(llm=OpenAI(), chain_type="stuff")
def main():
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
st.title("Welcome to BinDocs ChatBot! 🤖")
pdf_path = pdf_file_path
if not os.path.exists(pdf_path):
st.error("File not found. Please check the file path.")
return
if "chat_history" not in st.session_state:
st.session_state['chat_history'] = []
display_chat_history(st.session_state['chat_history'])
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
st.write("<!-- End Spacer -->", unsafe_allow_html=True)
if pdf_path is not None:
query = st.text_input("Ask questions about your PDF file (in any preferred language):", key="user_query")
cloud_buttons = [
("Was genau ist ein Belegarzt?", "Was genau ist ein Belegarzt?", "1"),
("Wofür wird die Alpha-ID verwendet?", "Wofür wird die Alpha-ID verwendet?", "2"),
# Add more buttons as needed
]
for label, query, color in cloud_buttons:
cloud_button(label, query, color=color)
user_input = st.empty()
if "button_clicked" in st.session_state:
button_info = st.session_state["button_clicked"]
if button_info:
st.write(f"You clicked: {button_info['label']}")
st.write(f"Query: {button_info['query']}")
# Handle the button click as needed
# For example, you can call a function to process the query
# process_query(button_info['query'])
st.session_state["button_clicked"] = None # Reset after handling
if st.button("Ask"):
user_input = st.session_state.user_query
handle_query(user_input, pdf_path)
def handle_query(query, pdf_path):
if not query:
st.warning("Please enter a query.")
return
st.session_state['chat_history'].append(("User", query, "new"))
loading_message = st.empty()
loading_message.text('Bot is thinking...')
VectorStore = load_pdf(pdf_path)
chain = load_chatbot()
docs = VectorStore.similarity_search(query=query, k=3)
with get_openai_callback() as cb:
response = chain.run(input_documents=docs, question=query)
st.session_state['chat_history'].append(("Bot", response, "new"))
display_chat_history(st.session_state['chat_history'][-2:])
loading_message.empty()
st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']]
if __name__ == "__main__":
main() |