Spaces:
Sleeping
Sleeping
import streamlit as st | |
from dotenv import load_dotenv | |
import pickle | |
from huggingface_hub import Repository | |
from PyPDF2 import PdfReader | |
from streamlit_extras.add_vertical_space import add_vertical_space | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.llms import OpenAI | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.callbacks import get_openai_callback | |
import os | |
st.markdown(""" | |
<style> | |
.cloud-button { | |
position: relative; | |
background: #E0E0E0; | |
border: none; | |
padding: 20px 40px; | |
cursor: pointer; | |
overflow: hidden; | |
outline: none; | |
box-shadow: 2px 2px 12px rgba(0,0,0,0.1); | |
} | |
/* Main cloud shape */ | |
.cloud-button::before { | |
content: ''; | |
position: absolute; | |
background: #E0E0E0; | |
border-radius: 50%; | |
width: 150px; | |
height: 150px; | |
top: -50px; | |
left: 50%; | |
transform: translateX(-50%); | |
} | |
/* Additional cloud bubbles */ | |
.cloud-button::after { | |
content: ''; | |
position: absolute; | |
background: #E0E0E0; | |
border-radius: 50%; | |
width: 120px; | |
height: 120px; | |
top: 20px; | |
left: 15%; | |
} | |
.cloud-button span { | |
position: relative; | |
z-index: 1; | |
} | |
/* Hover effect */ | |
.cloud-button:hover { | |
box-shadow: 2px 2px 18px rgba(0,0,0,0.2); | |
} | |
/* Override some default styles for the button to ensure cloud shape */ | |
.cloud-button, .cloud-button::before, .cloud-button::after { | |
border: none; | |
outline: none; | |
text-decoration: none; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
if hasattr(st.session_state, "cloud_button_pressed"): | |
query = st.session_state.cloud_button_pressed | |
del st.session_state.cloud_button_pressed # remove the attribute after using it | |
# Step 1: Clone the Dataset Repository | |
repo = Repository( | |
local_dir="Private_Book", # Local directory to clone the repository | |
repo_type="dataset", # Specify that this is a dataset repository | |
clone_from="Anne31415/Private_Book", # Replace with your repository URL | |
token=os.environ["HUB_TOKEN"] # Use the secret token to authenticate | |
) | |
repo.git_pull() # Pull the latest changes (if any) | |
# Step 2: Load the PDF File | |
pdf_file_path = "Private_Book/KOMBI_all2.pdf" # Replace with your PDF file path | |
with st.sidebar: | |
st.title('BinDoc GmbH') | |
st.markdown("Experience revolutionary interaction with BinDocs Chat App, leveraging state-of-the-art AI technology.") | |
add_vertical_space(1) # Adjust as per the desired spacing | |
st.markdown(""" | |
Hello! I’m here to assist you with:<br><br> | |
📘 **Glossary Inquiries:**<br> | |
I can clarify terms like "DiGA", "AOP", or "BfArM", providing clear and concise explanations to help you understand our content better.<br><br> | |
🆘 **Help Page Navigation:**<br> | |
Ask me if you forgot your password or want to know more about topics related to the platform.<br><br> | |
📰 **Latest Whitepapers Insights:**<br> | |
Curious about our recent publications? Feel free to ask about our latest whitepapers!<br><br> | |
""", unsafe_allow_html=True) | |
add_vertical_space(1) # Adjust as per the desired spacing | |
st.write('Made with ❤️ by BinDoc GmbH') | |
api_key = os.getenv("OPENAI_API_KEY") | |
# Retrieve the API key from st.secrets | |
def load_pdf(file_path): | |
pdf_reader = PdfReader(file_path) | |
text = "" | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text=text) | |
store_name, _ = os.path.splitext(os.path.basename(file_path)) | |
if os.path.exists(f"{store_name}.pkl"): | |
with open(f"{store_name}.pkl", "rb") as f: | |
VectorStore = pickle.load(f) | |
else: | |
embeddings = OpenAIEmbeddings() | |
VectorStore = FAISS.from_texts(chunks, embedding=embeddings) | |
with open(f"{store_name}.pkl", "wb") as f: | |
pickle.dump(VectorStore, f) | |
return VectorStore | |
# Load the PDF file when the app starts | |
if "pdf_data" not in st.session_state: | |
st.session_state.pdf_data = load_pdf(pdf_file_path) | |
def load_chatbot(): | |
return load_qa_chain(llm=OpenAI(), chain_type="stuff") | |
# Load the chatbot when the app starts | |
if "chatbot_instance" not in st.session_state: | |
st.session_state.chatbot_instance = load_chatbot() | |
def main(): | |
hide_streamlit_style = """ | |
<style> | |
#MainMenu {visibility: hidden;} | |
footer {visibility: hidden;} | |
</style> | |
""" | |
st.markdown(hide_streamlit_style, unsafe_allow_html=True) | |
# Main content | |
st.title("Welcome to BinDocs ChatBot! 🤖") | |
# Directly specifying the path to the PDF file | |
pdf_path = pdf_file_path | |
if not os.path.exists(pdf_path): | |
st.error("File not found. Please check the file path.") | |
return | |
if "chat_history" not in st.session_state: | |
st.session_state['chat_history'] = [] | |
display_chat_history(st.session_state['chat_history']) | |
st.write("<!-- Start Spacer -->", unsafe_allow_html=True) | |
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True) | |
st.write("<!-- End Spacer -->", unsafe_allow_html=True) | |
new_messages_placeholder = st.empty() | |
if pdf_path is not None: | |
query = st.text_input("Ask questions about your PDF file (in any preferred language):") | |
st.markdown(""" | |
<button class="cloud-button" onclick="document.dispatchEvent(new CustomEvent('cloud_button_event', {detail: 'Was genau ist ein Belegarzt?'}));"> | |
<span>Was genau ist ein Belegarzt?</span> | |
</button> | |
<script> | |
document.addEventListener('cloud_button_event', function(e) { | |
window.streamlitSetComponentValue(e.detail); | |
}); | |
</script> | |
""", unsafe_allow_html=True) | |
if st.button("Wofür wird die Alpha-ID verwendet?"): | |
query = "Wofür wird die Alpha-ID verwendet?" | |
if st.button("Ask") or is_cloud_button_pressed or (not st.session_state['chat_history'] and query) or (st.session_state['chat_history'] and query != st.session_state['chat_history'][-1][1]): | |
if is_cloud_button_pressed: | |
query = is_cloud_button_pressed | |
loading_message = st.empty() | |
loading_message.text('Bot is thinking...') | |
docs = st.session_state.pdf_data.similarity_search(query=query, k=3) | |
with get_openai_callback() as cb: | |
response = st.session_state.chatbot_instance.run(input_documents=docs, question=query) | |
st.session_state['chat_history'].append(("Bot", response, "new")) | |
# Display new messages at the bottom | |
new_messages = st.session_state['chat_history'][-2:] | |
for chat in new_messages: | |
background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf" | |
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True) | |
# Scroll to the latest response using JavaScript | |
st.write("<script>document.getElementById('response').scrollIntoView();</script>", unsafe_allow_html=True) | |
loading_message.empty() | |
# Clear the input field by setting the query variable to an empty string | |
query = "" | |
# Mark all messages as old after displaying | |
st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']] | |
def display_chat_history(chat_history): | |
for chat in chat_history: | |
background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf" | |
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True) | |
if __name__ == "__main__": | |
main() |