File size: 8,017 Bytes
12d891e
10a642d
7c95914
12d891e
7c95914
10a642d
7c95914
 
 
 
 
 
10a642d
7c95914
d796104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
407463d
 
 
 
 
 
 
 
d796104
 
 
 
191e71b
 
 
 
 
d796104
44c0e78
 
8a1f468
 
10a642d
8a1f468
10a642d
 
44c0e78
8a1f468
44c0e78
 
f3aaf05
47f6195
e713c7a
10a642d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5110733
10a642d
 
 
 
 
 
5110733
89ad1c6
403a475
7c95914
12d891e
7c95914
12d891e
 
 
 
 
 
 
 
 
 
8a1f468
7c95914
 
 
 
2df9243
7c95914
 
 
 
8a1f468
a63f1b5
10a642d
 
 
 
 
 
12d891e
c678561
a6d00b1
10a642d
 
 
2efa07b
6755ee0
 
12d891e
2efa07b
 
 
 
 
12d891e
191e71b
2b04423
12d891e
 
3357460
10a642d
b6bac0f
 
 
 
 
7c95914
 
 
a152229
7c95914
b6bac0f
 
 
 
9ca7d21
 
b6bac0f
 
 
407463d
191e71b
407463d
 
191e71b
 
 
 
 
 
 
d796104
3357460
 
10a642d
3357460
 
407463d
10a642d
3357460
 
 
 
 
10a642d
3357460
10a642d
3357460
 
 
 
 
10a642d
3357460
 
10a642d
3357460
10a642d
3357460
 
10a642d
3357460
 
10a642d
2efa07b
c31541c
10a642d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import streamlit as st
from dotenv import load_dotenv
import pickle
from huggingface_hub import Repository
from PyPDF2 import PdfReader
from streamlit_extras.add_vertical_space import add_vertical_space
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import OpenAI
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback
import os

st.markdown("""
<style>
.cloud-button {
    position: relative;
    background: #E0E0E0;
    border: none;
    padding: 20px 40px;
    cursor: pointer;
    overflow: hidden;
    outline: none;
    box-shadow: 2px 2px 12px rgba(0,0,0,0.1);
}

/* Main cloud shape */
.cloud-button::before {
    content: '';
    position: absolute;
    background: #E0E0E0;
    border-radius: 50%;
    width: 150px;
    height: 150px;
    top: -50px;
    left: 50%;
    transform: translateX(-50%);
}

/* Additional cloud bubbles */
.cloud-button::after {
    content: '';
    position: absolute;
    background: #E0E0E0;
    border-radius: 50%;
    width: 120px;
    height: 120px;
    top: 20px;
    left: 15%;
}

.cloud-button span {
    position: relative;
    z-index: 1;
}

/* Hover effect */
.cloud-button:hover {
    box-shadow: 2px 2px 18px rgba(0,0,0,0.2);
}

/* Override some default styles for the button to ensure cloud shape */
.cloud-button, .cloud-button::before, .cloud-button::after {
    border: none;
    outline: none;
    text-decoration: none;
}

</style>

""", unsafe_allow_html=True)

if hasattr(st.session_state, "cloud_button_pressed"):
    query = st.session_state.cloud_button_pressed
    del st.session_state.cloud_button_pressed  # remove the attribute after using it



# Step 1: Clone the Dataset Repository
repo = Repository(
    local_dir="Private_Book",  # Local directory to clone the repository
    repo_type="dataset",  # Specify that this is a dataset repository
    
    clone_from="Anne31415/Private_Book",  # Replace with your repository URL
    
    token=os.environ["HUB_TOKEN"]  # Use the secret token to authenticate
)
repo.git_pull()  # Pull the latest changes (if any)

# Step 2: Load the PDF File
pdf_file_path = "Private_Book/KOMBI_all2.pdf"  # Replace with your PDF file path



with st.sidebar:
    st.title('BinDoc GmbH')
    st.markdown("Experience revolutionary interaction with BinDocs Chat App, leveraging state-of-the-art AI technology.")
    
    add_vertical_space(1)  # Adjust as per the desired spacing
    
    st.markdown("""
    Hello! I’m here to assist you with:<br><br>
    📘 **Glossary Inquiries:**<br>
    I can clarify terms like "DiGA", "AOP", or "BfArM", providing clear and concise explanations to help you understand our content better.<br><br>
    🆘 **Help Page Navigation:**<br>
    Ask me if you forgot your password or want to know more about topics related to the platform.<br><br>
    📰 **Latest Whitepapers Insights:**<br>
    Curious about our recent publications? Feel free to ask about our latest whitepapers!<br><br>
    """, unsafe_allow_html=True)
    
    add_vertical_space(1)  # Adjust as per the desired spacing

    st.write('Made with ❤️ by BinDoc GmbH')

    api_key = os.getenv("OPENAI_API_KEY")
    # Retrieve the API key from st.secrets


def load_pdf(file_path):
    pdf_reader = PdfReader(file_path)
    text = ""
    for page in pdf_reader.pages:
        text += page.extract_text()

    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len
    )
    chunks = text_splitter.split_text(text=text)

    store_name, _ = os.path.splitext(os.path.basename(file_path))

    if os.path.exists(f"{store_name}.pkl"):
        with open(f"{store_name}.pkl", "rb") as f:
            VectorStore = pickle.load(f)
    else:
        embeddings = OpenAIEmbeddings()
        VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
        with open(f"{store_name}.pkl", "wb") as f:
            pickle.dump(VectorStore, f)

    return VectorStore

# Load the PDF file when the app starts
if "pdf_data" not in st.session_state:
    st.session_state.pdf_data = load_pdf(pdf_file_path)



def load_chatbot():
    return load_qa_chain(llm=OpenAI(), chain_type="stuff")

# Load the chatbot when the app starts
if "chatbot_instance" not in st.session_state:
    st.session_state.chatbot_instance = load_chatbot()

def main():

    hide_streamlit_style = """
            <style>
            #MainMenu {visibility: hidden;}
            footer {visibility: hidden;}
            </style>
            """
    st.markdown(hide_streamlit_style, unsafe_allow_html=True)


    # Main content
    st.title("Welcome to BinDocs ChatBot! 🤖")

    # Directly specifying the path to the PDF file
    pdf_path = pdf_file_path
    if not os.path.exists(pdf_path):
        st.error("File not found. Please check the file path.")
        return

    if "chat_history" not in st.session_state:
        st.session_state['chat_history'] = []

    display_chat_history(st.session_state['chat_history'])

    st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
    st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
    st.write("<!-- End Spacer -->", unsafe_allow_html=True)

    new_messages_placeholder = st.empty()

    if pdf_path is not None:
        query = st.text_input("Ask questions about your PDF file (in any preferred language):")

    st.markdown("""
    <button class="cloud-button" onclick="document.dispatchEvent(new CustomEvent('cloud_button_event', {detail: 'Was genau ist ein Belegarzt?'}));">
        <span>Was genau ist ein Belegarzt?</span>
    </button>
    <script>
    document.addEventListener('cloud_button_event', function(e) {
        window.streamlitSetComponentValue(e.detail);
});
</script>
""", unsafe_allow_html=True)


    if st.button("Wofür wird die Alpha-ID verwendet?"):
        query = "Wofür wird die Alpha-ID verwendet?"

    if st.button("Ask") or is_cloud_button_pressed or (not st.session_state['chat_history'] and query) or (st.session_state['chat_history'] and query != st.session_state['chat_history'][-1][1]):
        if is_cloud_button_pressed:
            query = is_cloud_button_pressed

        loading_message = st.empty()
        loading_message.text('Bot is thinking...')
        docs = st.session_state.pdf_data.similarity_search(query=query, k=3)
        with get_openai_callback() as cb:
            response = st.session_state.chatbot_instance.run(input_documents=docs, question=query)

        st.session_state['chat_history'].append(("Bot", response, "new"))

        # Display new messages at the bottom
        new_messages = st.session_state['chat_history'][-2:]
        for chat in new_messages:
            background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf"
            new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)

        # Scroll to the latest response using JavaScript
        st.write("<script>document.getElementById('response').scrollIntoView();</script>", unsafe_allow_html=True)

        loading_message.empty()

        # Clear the input field by setting the query variable to an empty string
        query = ""

    # Mark all messages as old after displaying
    st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']]




def display_chat_history(chat_history):
    for chat in chat_history:
        background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf"
        st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)

if __name__ == "__main__":
    main()