File size: 7,635 Bytes
12d891e
 
3237bea
7c95914
12d891e
7c95914
 
 
 
 
 
 
 
12d891e
7c95914
5d91cf0
 
 
3237bea
5d91cf0
 
 
3237bea
 
 
 
 
44c0e78
 
5d91cf0
 
 
 
44c0e78
5d91cf0
 
44c0e78
 
12d891e
47f6195
7c95914
12d891e
 
abd1f1b
12d891e
d3de2d8
12d891e
 
 
 
 
 
 
 
 
 
 
 
f8dc8d1
a98948f
12d891e
 
403a475
7c95914
12d891e
7c95914
12d891e
 
 
 
 
 
 
 
 
 
7c95914
 
 
 
2df9243
7c95914
 
 
3237bea
 
f9dbffb
7c95914
a63f1b5
4a1415a
5d91cf0
12d891e
c678561
a6d00b1
12d891e
4a1415a
12d891e
 
 
 
 
 
 
2b04423
4a1415a
12d891e
 
4a1415a
12d891e
b6bac0f
 
 
 
 
7c95914
 
 
a152229
7c95914
b6bac0f
 
 
 
9ca7d21
 
b6bac0f
 
 
 
 
 
 
 
 
12d891e
 
 
 
 
4a1415a
b6bac0f
4a1415a
12d891e
 
2e38376
4a1415a
12d891e
b6bac0f
12d891e
 
 
5d91cf0
 
 
 
 
 
 
 
 
12d891e
 
36c54d4
12d891e
36c54d4
12d891e
36c54d4
 
 
 
 
12d891e
36c54d4
 
4a1415a
 
12d891e
36c54d4
 
12d891e
 
14d9fa2
12d891e
 
 
 
 
 
abd1f1b
0da8351
4a1415a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import streamlit as st
from dotenv import load_dotenv
import pinecone
import pickle
from huggingface_hub import Repository
from PyPDF2 import PdfReader
from streamlit_extras.add_vertical_space import add_vertical_space
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import OpenAI
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback
import os

# Load all necessary environment variables at the beginning of the script
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")

pinecone.init(PINECONE_API_KEY="PINECONE_API_KEY")

INDEX_NAME = "pdfbot1"
if INDEX_NAME not in pinecone.list_indexes():
    pinecone.create_index(name=INDEX_NAME, metric="cosine", shards=1)



# Step 1: Clone the Dataset Repository
repo = Repository(
    local_dir="Private_Book",
    repo_type="dataset",
    clone_from="Anne31415/Private_Book",
    token=os.environ["HUB_TOKEN"]
)
repo.git_pull()


# Step 2: Load the PDF File
pdf_file_path = "Private_Book/Glossar_HELP_DESK_combi.pdf"  # Replace with your PDF file path

with st.sidebar:
    st.title('BinDoc GmbH')
    st.markdown("Experience revolutionary interaction with BinDocs Chat App, leveraging state-of-the-art AI technology.")
    
    add_vertical_space(1)  # Adjust as per the desired spacing
    
    st.markdown("""
    Hello! I’m here to assist you with:<br><br>
    📘 **Glossary Inquiries:**<br>
    I can clarify terms like "DiGA", "AOP", or "BfArM", providing clear and concise explanations to help you understand our content better.<br><br>
    🆘 **Help Page Navigation:**<br>
    Ask me if you forgot your password or want to know more about topics related to the platform.<br><br>
    📰 **Latest Whitepapers Insights:**<br>
    Curious about our recent publications? Feel free to ask about our latest whitepapers!<br><br>
    """, unsafe_allow_html=True)
    
    add_vertical_space(1)  # Adjust as per the desired spacing

    st.write('Made with ❤️ by BinDoc GmbH')



def load_pdf(file_path):
    pdf_reader = PdfReader(file_path)
    text = ""
    for page in pdf_reader.pages:
        text += page.extract_text()

    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len
    )
    chunks = text_splitter.split_text(text=text)

    store_name, _ = os.path.splitext(os.path.basename(file_path))
    if os.path.exists(f"{store_name}.pkl"):
        with open(f"{store_name}.pkl", "rb") as f:
            VectorStore = pickle.load(f)
    else:
        embeddings = OpenAIEmbeddings()
        VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
        with open(f"{store_name}.pkl", "wb") as f:
            pickle.dump(VectorStore, f)
    vector_dict = {str(i): vector for i, vector in enumerate(VectorStore.vectors)}
    pinecone.upsert(items=vector_dict, index_name=INDEX_NAME)
    return VectorStore




def load_chatbot():
    return load_qa_chain(llm=OpenAI(), chain_type="stuff")

def main():

    hide_streamlit_style = """
            <style>
            #MainMenu {visibility: hidden;}
            footer {visibility: hidden;}
            </style>
            """
    st.markdown(hide_streamlit_style, unsafe_allow_html=True)


    # Main content
    st.title("Welcome to BinDocs ChatBot! 🤖")
    
    # Directly specifying the path to the PDF file
    pdf_path = pdf_file_path
    if not os.path.exists(pdf_path):
        st.error("File not found. Please check the file path.")
        return

    if "chat_history" not in st.session_state:
        st.session_state['chat_history'] = []

    display_chat_history(st.session_state['chat_history'])

    st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
    st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
    st.write("<!-- End Spacer -->", unsafe_allow_html=True)

    new_messages_placeholder = st.empty()

    if pdf_path is not None:
        query = st.text_input("Ask questions about your PDF file (in any preferred language):")

        if st.button("Was genau ist ein Belegarzt?"):
            query = "Was genau ist ein Belegarzt?"
        if st.button("Wofür wird die Alpha-ID verwendet?"):
            query = "Wofür wird die Alpha-ID verwendet?"
        if st.button("Was sind die Vorteile des ambulanten operierens?"):
            query = "Was sind die Vorteile des ambulanten operierens?"
        if st.button("Was kann ich mit dem Prognose-Analyse Toll machen?"):
            query = "Was kann ich mit dem Prognose-Analyse Toll machen?"
        if st.button("Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?"):
            query = "Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?"
        if st.button("Ich habe mein Meta Password vergessen, wie kann ich es zurücksetzen?"):
            query = ("Ich habe mein Meta Password vergessen, wie kann ich es zurücksetzen?")

            
        if st.button("Ask") or (not st.session_state['chat_history'] and query) or (st.session_state['chat_history'] and query != st.session_state['chat_history'][-1][1]):
            st.session_state['chat_history'].append(("User", query, "new"))

            loading_message = st.empty()
            loading_message.text('Bot is thinking...')

            VectorStore = load_pdf(pdf_path)
            chain = load_chatbot()
            docs = VectorStore.similarity_search(query=query, k=3)

            # Searching for similar documents in Pinecone
            query_vector = embeddings.embed_text(query)
            search_results = pinecone.query(queries=[query_vector], index_name=INDEX_NAME, top_k=3)
            # Extracting document ids from Pinecone's results
            doc_ids = [int(item.id) for item in search_results.results[0].matches]
            # Retrieving the actual document texts based on the ids
            docs = [texts[id] for id in doc_ids]

            with get_openai_callback() as cb:
                response = chain.run(input_documents=docs, question=query)

            st.session_state['chat_history'].append(("Bot", response, "new"))

            # Display new messages at the bottom
            new_messages = st.session_state['chat_history'][-2:]
            for chat in new_messages:
                background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf"
                new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)

            # Scroll to the latest response using JavaScript
            st.write("<script>document.getElementById('response').scrollIntoView();</script>", unsafe_allow_html=True)

            loading_message.empty()

            # Clear the input field by setting the query variable to an empty string
            query = ""

        # Mark all messages as old after displaying
        st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']]



def display_chat_history(chat_history):
    for chat in chat_history:
        background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf"
        st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)

if __name__ == "__main__":
    main()