Real_Time_diarization / realtime_diarize.py
Saiyaswanth007's picture
Code Update
4611564
raw
history blame
18.3 kB
import os
import sys
import time
import queue
import threading
import signal
import atexit
from contextlib import contextmanager
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
import numpy as np
import torch
import torchaudio
from scipy.spatial.distance import cosine
try:
import soundcard as sc
except ImportError:
print("soundcard not found. Install with: pip install soundcard")
sys.exit(1)
try:
from RealtimeSTT import AudioToTextRecorder
except ImportError:
print("RealtimeSTT not found. Install with: pip install RealtimeSTT")
sys.exit(1)
# Configuration
class Config:
# Audio settings
SAMPLE_RATE = 16000
BUFFER_SIZE = 1024
CHANNELS = 1
# Transcription settings
FINAL_MODEL = "distil-large-v3"
REALTIME_MODEL = "distil-small.en"
LANGUAGE = "en"
BEAM_SIZE = 5
REALTIME_BEAM_SIZE = 3
# Voice activity detection
SILENCE_THRESHOLD = 0.4
MIN_RECORDING_LENGTH = 0.5
PRE_RECORDING_BUFFER = 0.2
SILERO_SENSITIVITY = 0.4
WEBRTC_SENSITIVITY = 3
# Speaker detection
CHANGE_THRESHOLD = 0.65
MAX_SPEAKERS = 4
MIN_SEGMENT_DURATION = 1.0
EMBEDDING_HISTORY_SIZE = 3
SPEAKER_MEMORY_SIZE = 20
# Console colors for speakers
COLORS = [
'\033[93m', # Yellow
'\033[91m', # Red
'\033[92m', # Green
'\033[96m', # Cyan
'\033[95m', # Magenta
'\033[94m', # Blue
'\033[97m', # White
'\033[33m', # Orange
]
RESET = '\033[0m'
LIVE_COLOR = '\033[90m'
class SpeakerEncoder:
"""Simplified speaker encoder using torchaudio transforms"""
def __init__(self, device="cpu"):
self.device = device
self.embedding_dim = 128
self.model_loaded = False
self._setup_model()
def _setup_model(self):
"""Setup a simple MFCC-based feature extractor"""
try:
self.mfcc_transform = torchaudio.transforms.MFCC(
sample_rate=Config.SAMPLE_RATE,
n_mfcc=13,
melkwargs={"n_fft": 400, "hop_length": 160, "n_mels": 23}
).to(self.device)
self.model_loaded = True
print("Simple MFCC-based encoder initialized")
except Exception as e:
print(f"Error setting up encoder: {e}")
self.model_loaded = False
def extract_embedding(self, audio):
"""Extract speaker embedding from audio"""
if not self.model_loaded:
return np.zeros(self.embedding_dim)
try:
# Ensure audio is float32 and normalized
if isinstance(audio, np.ndarray):
audio = torch.from_numpy(audio).float()
# Normalize audio
if audio.abs().max() > 0:
audio = audio / audio.abs().max()
# Add batch dimension if needed
if audio.dim() == 1:
audio = audio.unsqueeze(0)
# Extract MFCC features
with torch.no_grad():
mfcc = self.mfcc_transform(audio)
# Simple statistics-based embedding
embedding = torch.cat([
mfcc.mean(dim=2).flatten(),
mfcc.std(dim=2).flatten(),
mfcc.max(dim=2)[0].flatten(),
mfcc.min(dim=2)[0].flatten()
])
# Pad or truncate to fixed size
if embedding.size(0) > self.embedding_dim:
embedding = embedding[:self.embedding_dim]
elif embedding.size(0) < self.embedding_dim:
padding = torch.zeros(self.embedding_dim - embedding.size(0))
embedding = torch.cat([embedding, padding])
return embedding.cpu().numpy()
except Exception as e:
print(f"Error extracting embedding: {e}")
return np.zeros(self.embedding_dim)
class SpeakerDetector:
"""Speaker change detection using embeddings"""
def __init__(self, threshold=Config.CHANGE_THRESHOLD, max_speakers=Config.MAX_SPEAKERS):
self.threshold = threshold
self.max_speakers = max_speakers
self.current_speaker = 0
self.speaker_embeddings = [[] for _ in range(max_speakers)]
self.speaker_centroids = [None] * max_speakers
self.last_change_time = time.time()
self.active_speakers = {0}
def detect_speaker(self, embedding):
"""Detect current speaker from embedding"""
current_time = time.time()
# Initialize first speaker
if not self.speaker_embeddings[0]:
self.speaker_embeddings[0].append(embedding)
self.speaker_centroids[0] = embedding.copy()
return 0, 1.0
# Calculate similarity with current speaker
current_centroid = self.speaker_centroids[self.current_speaker]
if current_centroid is not None:
similarity = 1.0 - cosine(embedding, current_centroid)
else:
similarity = 0.0
# Check if enough time has passed for a speaker change
if current_time - self.last_change_time < Config.MIN_SEGMENT_DURATION:
self._update_speaker_model(self.current_speaker, embedding)
return self.current_speaker, similarity
# Check for speaker change
if similarity < self.threshold:
# Find best matching existing speaker
best_speaker = self.current_speaker
best_similarity = similarity
for speaker_id in self.active_speakers:
if speaker_id == self.current_speaker:
continue
centroid = self.speaker_centroids[speaker_id]
if centroid is not None:
sim = 1.0 - cosine(embedding, centroid)
if sim > best_similarity and sim > self.threshold:
best_similarity = sim
best_speaker = speaker_id
# Create new speaker if no good match and slots available
if (best_speaker == self.current_speaker and
len(self.active_speakers) < self.max_speakers):
for new_id in range(self.max_speakers):
if new_id not in self.active_speakers:
best_speaker = new_id
best_similarity = 0.0
self.active_speakers.add(new_id)
break
# Update current speaker if changed
if best_speaker != self.current_speaker:
self.current_speaker = best_speaker
self.last_change_time = current_time
similarity = best_similarity
# Update speaker model
self._update_speaker_model(self.current_speaker, embedding)
return self.current_speaker, similarity
def _update_speaker_model(self, speaker_id, embedding):
"""Update speaker model with new embedding"""
self.speaker_embeddings[speaker_id].append(embedding)
# Keep only recent embeddings
if len(self.speaker_embeddings[speaker_id]) > Config.SPEAKER_MEMORY_SIZE:
self.speaker_embeddings[speaker_id] = \
self.speaker_embeddings[speaker_id][-Config.SPEAKER_MEMORY_SIZE:]
# Update centroid
if self.speaker_embeddings[speaker_id]:
self.speaker_centroids[speaker_id] = np.mean(
self.speaker_embeddings[speaker_id], axis=0
)
class AudioRecorder:
"""Handles audio recording from system audio"""
def __init__(self, audio_queue):
self.audio_queue = audio_queue
self.running = False
self.thread = None
def start(self):
"""Start recording"""
self.running = True
self.thread = threading.Thread(target=self._record_loop, daemon=True)
self.thread.start()
print("Audio recording started")
def stop(self):
"""Stop recording"""
self.running = False
if self.thread and self.thread.is_alive():
self.thread.join(timeout=2)
def _record_loop(self):
"""Main recording loop"""
try:
# Try to use system audio (loopback)
try:
device = sc.default_speaker()
with device.recorder(
samplerate=Config.SAMPLE_RATE,
blocksize=Config.BUFFER_SIZE,
channels=Config.CHANNELS
) as recorder:
print(f"Recording from: {device.name}")
while self.running:
data = recorder.record(numframes=Config.BUFFER_SIZE)
if data is not None and len(data) > 0:
# Convert to mono if needed
if data.ndim > 1:
data = data[:, 0]
self.audio_queue.put(data.flatten())
except Exception as e:
print(f"Loopback recording failed: {e}")
print("Falling back to microphone...")
# Fallback to microphone
mic = sc.default_microphone()
with mic.recorder(
samplerate=Config.SAMPLE_RATE,
blocksize=Config.BUFFER_SIZE,
channels=Config.CHANNELS
) as recorder:
print(f"Recording from microphone: {mic.name}")
while self.running:
data = recorder.record(numframes=Config.BUFFER_SIZE)
if data is not None and len(data) > 0:
if data.ndim > 1:
data = data[:, 0]
self.audio_queue.put(data.flatten())
except Exception as e:
print(f"Recording error: {e}")
self.running = False
class TranscriptionProcessor:
"""Handles transcription and speaker detection"""
def __init__(self):
self.encoder = SpeakerEncoder()
self.detector = SpeakerDetector()
self.recorder = None
self.audio_queue = queue.Queue(maxsize=100)
self.audio_recorder = AudioRecorder(self.audio_queue)
self.processing_thread = None
self.running = False
def setup(self):
"""Setup transcription recorder"""
try:
self.recorder = AudioToTextRecorder(
spinner=False,
use_microphone=False,
model=Config.FINAL_MODEL,
language=Config.LANGUAGE,
silero_sensitivity=Config.SILERO_SENSITIVITY,
webrtc_sensitivity=Config.WEBRTC_SENSITIVITY,
post_speech_silence_duration=Config.SILENCE_THRESHOLD,
min_length_of_recording=Config.MIN_RECORDING_LENGTH,
pre_recording_buffer_duration=Config.PRE_RECORDING_BUFFER,
enable_realtime_transcription=True,
realtime_model_type=Config.REALTIME_MODEL,
beam_size=Config.BEAM_SIZE,
beam_size_realtime=Config.REALTIME_BEAM_SIZE,
on_realtime_transcription_update=self._on_live_text,
)
print("Transcription recorder setup complete")
return True
except Exception as e:
print(f"Transcription setup failed: {e}")
return False
def start(self):
"""Start processing"""
if not self.setup():
return False
self.running = True
# Start audio recording
self.audio_recorder.start()
# Start audio processing thread
self.processing_thread = threading.Thread(target=self._process_audio, daemon=True)
self.processing_thread.start()
# Start transcription
self._start_transcription()
return True
def stop(self):
"""Stop processing"""
print("\nStopping transcription...")
self.running = False
if self.audio_recorder:
self.audio_recorder.stop()
if self.processing_thread and self.processing_thread.is_alive():
self.processing_thread.join(timeout=2)
if self.recorder:
try:
self.recorder.shutdown()
except:
pass
def _process_audio(self):
"""Process audio chunks for speaker detection"""
audio_buffer = []
while self.running:
try:
# Get audio chunk
chunk = self.audio_queue.get(timeout=0.1)
audio_buffer.extend(chunk)
# Process when we have enough audio (about 1 second)
if len(audio_buffer) >= Config.SAMPLE_RATE:
audio_array = np.array(audio_buffer[:Config.SAMPLE_RATE])
audio_buffer = audio_buffer[Config.SAMPLE_RATE//2:] # 50% overlap
# Convert to int16 for recorder
audio_int16 = (audio_array * 32767).astype(np.int16)
# Feed to transcription recorder
if self.recorder:
self.recorder.feed_audio(audio_int16.tobytes())
except queue.Empty:
continue
except Exception as e:
if self.running:
print(f"Audio processing error: {e}")
def _start_transcription(self):
"""Start transcription loop"""
def transcription_loop():
while self.running:
try:
text = self.recorder.text()
if text and text.strip():
self._process_final_text(text)
except Exception as e:
if self.running:
print(f"Transcription error: {e}")
break
transcription_thread = threading.Thread(target=transcription_loop, daemon=True)
transcription_thread.start()
def _on_live_text(self, text):
"""Handle live transcription updates"""
if text and text.strip():
print(f"\r{LIVE_COLOR}[Live] {text}{RESET}", end="", flush=True)
def _process_final_text(self, text):
"""Process final transcription with speaker detection"""
# Clear live text line
print("\r" + " " * 80 + "\r", end="")
try:
# Get recent audio for speaker detection
recent_audio = []
temp_queue = []
# Collect recent audio chunks
for _ in range(min(10, self.audio_queue.qsize())):
try:
chunk = self.audio_queue.get_nowait()
recent_audio.extend(chunk)
temp_queue.append(chunk)
except queue.Empty:
break
# Put chunks back
for chunk in reversed(temp_queue):
try:
self.audio_queue.put_nowait(chunk)
except queue.Full:
break
# Extract speaker embedding if we have audio
if recent_audio:
audio_tensor = torch.FloatTensor(recent_audio[-Config.SAMPLE_RATE:])
embedding = self.encoder.extract_embedding(audio_tensor)
speaker_id, similarity = self.detector.detect_speaker(embedding)
else:
speaker_id, similarity = 0, 1.0
# Display with speaker color
color = COLORS[speaker_id % len(COLORS)]
print(f"{color}Speaker {speaker_id + 1}: {text}{RESET}")
except Exception as e:
print(f"Error processing text: {e}")
print(f"Text: {text}")
class RealTimeSpeakerDetection:
"""Main application class"""
def __init__(self):
self.processor = None
self.running = False
# Setup signal handlers for clean shutdown
signal.signal(signal.SIGINT, self._signal_handler)
signal.signal(signal.SIGTERM, self._signal_handler)
atexit.register(self.cleanup)
def _signal_handler(self, signum, frame):
"""Handle shutdown signals"""
print(f"\nReceived signal {signum}, shutting down...")
self.stop()
def start(self):
"""Start the application"""
print("=== Real-time Speaker Detection and Transcription ===")
print("Initializing...")
self.processor = TranscriptionProcessor()
if not self.processor.start():
print("Failed to start. Check your audio setup and dependencies.")
return False
self.running = True
print("=" * 60)
print("System ready! Listening for audio...")
print("Different speakers will be shown in different colors.")
print("Press Ctrl+C to stop.")
print("=" * 60)
# Keep main thread alive
try:
while self.running:
time.sleep(1)
except KeyboardInterrupt:
pass
return True
def stop(self):
"""Stop the application"""
if not self.running:
return
self.running = False
if self.processor:
self.processor.stop()
print("System stopped.")
def cleanup(self):
"""Cleanup resources"""
self.stop()
def main():
"""Main entry point"""
app = RealTimeSpeakerDetection()
try:
app.start()
except Exception as e:
print(f"Application error: {e}")
finally:
app.cleanup()
if __name__ == "__main__":
main()