File size: 18,287 Bytes
4611564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
import os
import sys
import time
import queue
import threading
import signal
import atexit
from contextlib import contextmanager
import warnings
warnings.filterwarnings("ignore", category=UserWarning)

import numpy as np
import torch
import torchaudio
from scipy.spatial.distance import cosine

try:
    import soundcard as sc
except ImportError:
    print("soundcard not found. Install with: pip install soundcard")
    sys.exit(1)

try:
    from RealtimeSTT import AudioToTextRecorder
except ImportError:
    print("RealtimeSTT not found. Install with: pip install RealtimeSTT")
    sys.exit(1)

# Configuration
class Config:
    # Audio settings
    SAMPLE_RATE = 16000
    BUFFER_SIZE = 1024
    CHANNELS = 1
    
    # Transcription settings
    FINAL_MODEL = "distil-large-v3"
    REALTIME_MODEL = "distil-small.en"
    LANGUAGE = "en"
    BEAM_SIZE = 5
    REALTIME_BEAM_SIZE = 3
    
    # Voice activity detection
    SILENCE_THRESHOLD = 0.4
    MIN_RECORDING_LENGTH = 0.5
    PRE_RECORDING_BUFFER = 0.2
    SILERO_SENSITIVITY = 0.4
    WEBRTC_SENSITIVITY = 3
    
    # Speaker detection
    CHANGE_THRESHOLD = 0.65
    MAX_SPEAKERS = 4
    MIN_SEGMENT_DURATION = 1.0
    EMBEDDING_HISTORY_SIZE = 3
    SPEAKER_MEMORY_SIZE = 20

# Console colors for speakers
COLORS = [
    '\033[93m',  # Yellow
    '\033[91m',  # Red  
    '\033[92m',  # Green
    '\033[96m',  # Cyan
    '\033[95m',  # Magenta
    '\033[94m',  # Blue
    '\033[97m',  # White
    '\033[33m',  # Orange
]
RESET = '\033[0m'
LIVE_COLOR = '\033[90m'

class SpeakerEncoder:
    """Simplified speaker encoder using torchaudio transforms"""
    
    def __init__(self, device="cpu"):
        self.device = device
        self.embedding_dim = 128
        self.model_loaded = False
        self._setup_model()
    
    def _setup_model(self):
        """Setup a simple MFCC-based feature extractor"""
        try:
            self.mfcc_transform = torchaudio.transforms.MFCC(
                sample_rate=Config.SAMPLE_RATE,
                n_mfcc=13,
                melkwargs={"n_fft": 400, "hop_length": 160, "n_mels": 23}
            ).to(self.device)
            self.model_loaded = True
            print("Simple MFCC-based encoder initialized")
        except Exception as e:
            print(f"Error setting up encoder: {e}")
            self.model_loaded = False
    
    def extract_embedding(self, audio):
        """Extract speaker embedding from audio"""
        if not self.model_loaded:
            return np.zeros(self.embedding_dim)
        
        try:
            # Ensure audio is float32 and normalized
            if isinstance(audio, np.ndarray):
                audio = torch.from_numpy(audio).float()
            
            # Normalize audio
            if audio.abs().max() > 0:
                audio = audio / audio.abs().max()
            
            # Add batch dimension if needed
            if audio.dim() == 1:
                audio = audio.unsqueeze(0)
            
            # Extract MFCC features
            with torch.no_grad():
                mfcc = self.mfcc_transform(audio)
                # Simple statistics-based embedding
                embedding = torch.cat([
                    mfcc.mean(dim=2).flatten(),
                    mfcc.std(dim=2).flatten(),
                    mfcc.max(dim=2)[0].flatten(),
                    mfcc.min(dim=2)[0].flatten()
                ])
                
                # Pad or truncate to fixed size
                if embedding.size(0) > self.embedding_dim:
                    embedding = embedding[:self.embedding_dim]
                elif embedding.size(0) < self.embedding_dim:
                    padding = torch.zeros(self.embedding_dim - embedding.size(0))
                    embedding = torch.cat([embedding, padding])
            
            return embedding.cpu().numpy()
            
        except Exception as e:
            print(f"Error extracting embedding: {e}")
            return np.zeros(self.embedding_dim)

class SpeakerDetector:
    """Speaker change detection using embeddings"""
    
    def __init__(self, threshold=Config.CHANGE_THRESHOLD, max_speakers=Config.MAX_SPEAKERS):
        self.threshold = threshold
        self.max_speakers = max_speakers
        self.current_speaker = 0
        self.speaker_embeddings = [[] for _ in range(max_speakers)]
        self.speaker_centroids = [None] * max_speakers
        self.last_change_time = time.time()
        self.active_speakers = {0}
        
    def detect_speaker(self, embedding):
        """Detect current speaker from embedding"""
        current_time = time.time()
        
        # Initialize first speaker
        if not self.speaker_embeddings[0]:
            self.speaker_embeddings[0].append(embedding)
            self.speaker_centroids[0] = embedding.copy()
            return 0, 1.0
        
        # Calculate similarity with current speaker
        current_centroid = self.speaker_centroids[self.current_speaker]
        if current_centroid is not None:
            similarity = 1.0 - cosine(embedding, current_centroid)
        else:
            similarity = 0.0
        
        # Check if enough time has passed for a speaker change
        if current_time - self.last_change_time < Config.MIN_SEGMENT_DURATION:
            self._update_speaker_model(self.current_speaker, embedding)
            return self.current_speaker, similarity
        
        # Check for speaker change
        if similarity < self.threshold:
            # Find best matching existing speaker
            best_speaker = self.current_speaker
            best_similarity = similarity
            
            for speaker_id in self.active_speakers:
                if speaker_id == self.current_speaker:
                    continue
                    
                centroid = self.speaker_centroids[speaker_id]
                if centroid is not None:
                    sim = 1.0 - cosine(embedding, centroid)
                    if sim > best_similarity and sim > self.threshold:
                        best_similarity = sim
                        best_speaker = speaker_id
            
            # Create new speaker if no good match and slots available
            if (best_speaker == self.current_speaker and 
                len(self.active_speakers) < self.max_speakers):
                for new_id in range(self.max_speakers):
                    if new_id not in self.active_speakers:
                        best_speaker = new_id
                        best_similarity = 0.0
                        self.active_speakers.add(new_id)
                        break
            
            # Update current speaker if changed
            if best_speaker != self.current_speaker:
                self.current_speaker = best_speaker
                self.last_change_time = current_time
                similarity = best_similarity
        
        # Update speaker model
        self._update_speaker_model(self.current_speaker, embedding)
        return self.current_speaker, similarity
    
    def _update_speaker_model(self, speaker_id, embedding):
        """Update speaker model with new embedding"""
        self.speaker_embeddings[speaker_id].append(embedding)
        
        # Keep only recent embeddings
        if len(self.speaker_embeddings[speaker_id]) > Config.SPEAKER_MEMORY_SIZE:
            self.speaker_embeddings[speaker_id] = \
                self.speaker_embeddings[speaker_id][-Config.SPEAKER_MEMORY_SIZE:]
        
        # Update centroid
        if self.speaker_embeddings[speaker_id]:
            self.speaker_centroids[speaker_id] = np.mean(
                self.speaker_embeddings[speaker_id], axis=0
            )

class AudioRecorder:
    """Handles audio recording from system audio"""
    
    def __init__(self, audio_queue):
        self.audio_queue = audio_queue
        self.running = False
        self.thread = None
        
    def start(self):
        """Start recording"""
        self.running = True
        self.thread = threading.Thread(target=self._record_loop, daemon=True)
        self.thread.start()
        print("Audio recording started")
    
    def stop(self):
        """Stop recording"""
        self.running = False
        if self.thread and self.thread.is_alive():
            self.thread.join(timeout=2)
    
    def _record_loop(self):
        """Main recording loop"""
        try:
            # Try to use system audio (loopback)
            try:
                device = sc.default_speaker()
                with device.recorder(
                    samplerate=Config.SAMPLE_RATE,
                    blocksize=Config.BUFFER_SIZE,
                    channels=Config.CHANNELS
                ) as recorder:
                    print(f"Recording from: {device.name}")
                    while self.running:
                        data = recorder.record(numframes=Config.BUFFER_SIZE)
                        if data is not None and len(data) > 0:
                            # Convert to mono if needed
                            if data.ndim > 1:
                                data = data[:, 0]
                            self.audio_queue.put(data.flatten())
                        
            except Exception as e:
                print(f"Loopback recording failed: {e}")
                print("Falling back to microphone...")
                
                # Fallback to microphone
                mic = sc.default_microphone()
                with mic.recorder(
                    samplerate=Config.SAMPLE_RATE,
                    blocksize=Config.BUFFER_SIZE,
                    channels=Config.CHANNELS
                ) as recorder:
                    print(f"Recording from microphone: {mic.name}")
                    while self.running:
                        data = recorder.record(numframes=Config.BUFFER_SIZE)
                        if data is not None and len(data) > 0:
                            if data.ndim > 1:
                                data = data[:, 0]
                            self.audio_queue.put(data.flatten())
                            
        except Exception as e:
            print(f"Recording error: {e}")
            self.running = False

class TranscriptionProcessor:
    """Handles transcription and speaker detection"""
    
    def __init__(self):
        self.encoder = SpeakerEncoder()
        self.detector = SpeakerDetector()
        self.recorder = None
        self.audio_queue = queue.Queue(maxsize=100)
        self.audio_recorder = AudioRecorder(self.audio_queue)
        self.processing_thread = None
        self.running = False
        
    def setup(self):
        """Setup transcription recorder"""
        try:
            self.recorder = AudioToTextRecorder(
                spinner=False,
                use_microphone=False,
                model=Config.FINAL_MODEL,
                language=Config.LANGUAGE,
                silero_sensitivity=Config.SILERO_SENSITIVITY,
                webrtc_sensitivity=Config.WEBRTC_SENSITIVITY,
                post_speech_silence_duration=Config.SILENCE_THRESHOLD,
                min_length_of_recording=Config.MIN_RECORDING_LENGTH,
                pre_recording_buffer_duration=Config.PRE_RECORDING_BUFFER,
                enable_realtime_transcription=True,
                realtime_model_type=Config.REALTIME_MODEL,
                beam_size=Config.BEAM_SIZE,
                beam_size_realtime=Config.REALTIME_BEAM_SIZE,
                on_realtime_transcription_update=self._on_live_text,
            )
            print("Transcription recorder setup complete")
            return True
        except Exception as e:
            print(f"Transcription setup failed: {e}")
            return False
    
    def start(self):
        """Start processing"""
        if not self.setup():
            return False
            
        self.running = True
        
        # Start audio recording
        self.audio_recorder.start()
        
        # Start audio processing thread
        self.processing_thread = threading.Thread(target=self._process_audio, daemon=True)
        self.processing_thread.start()
        
        # Start transcription
        self._start_transcription()
        
        return True
    
    def stop(self):
        """Stop processing"""
        print("\nStopping transcription...")
        self.running = False
        
        if self.audio_recorder:
            self.audio_recorder.stop()
            
        if self.processing_thread and self.processing_thread.is_alive():
            self.processing_thread.join(timeout=2)
            
        if self.recorder:
            try:
                self.recorder.shutdown()
            except:
                pass
    
    def _process_audio(self):
        """Process audio chunks for speaker detection"""
        audio_buffer = []
        
        while self.running:
            try:
                # Get audio chunk
                chunk = self.audio_queue.get(timeout=0.1)
                audio_buffer.extend(chunk)
                
                # Process when we have enough audio (about 1 second)
                if len(audio_buffer) >= Config.SAMPLE_RATE:
                    audio_array = np.array(audio_buffer[:Config.SAMPLE_RATE])
                    audio_buffer = audio_buffer[Config.SAMPLE_RATE//2:]  # 50% overlap
                    
                    # Convert to int16 for recorder
                    audio_int16 = (audio_array * 32767).astype(np.int16)
                    
                    # Feed to transcription recorder
                    if self.recorder:
                        self.recorder.feed_audio(audio_int16.tobytes())
                        
            except queue.Empty:
                continue
            except Exception as e:
                if self.running:
                    print(f"Audio processing error: {e}")
    
    def _start_transcription(self):
        """Start transcription loop"""
        def transcription_loop():
            while self.running:
                try:
                    text = self.recorder.text()
                    if text and text.strip():
                        self._process_final_text(text)
                except Exception as e:
                    if self.running:
                        print(f"Transcription error: {e}")
                    break
        
        transcription_thread = threading.Thread(target=transcription_loop, daemon=True)
        transcription_thread.start()
    
    def _on_live_text(self, text):
        """Handle live transcription updates"""
        if text and text.strip():
            print(f"\r{LIVE_COLOR}[Live] {text}{RESET}", end="", flush=True)
    
    def _process_final_text(self, text):
        """Process final transcription with speaker detection"""
        # Clear live text line
        print("\r" + " " * 80 + "\r", end="")
        
        try:
            # Get recent audio for speaker detection
            recent_audio = []
            temp_queue = []
            
            # Collect recent audio chunks
            for _ in range(min(10, self.audio_queue.qsize())):
                try:
                    chunk = self.audio_queue.get_nowait()
                    recent_audio.extend(chunk)
                    temp_queue.append(chunk)
                except queue.Empty:
                    break
            
            # Put chunks back
            for chunk in reversed(temp_queue):
                try:
                    self.audio_queue.put_nowait(chunk)
                except queue.Full:
                    break
            
            # Extract speaker embedding if we have audio
            if recent_audio:
                audio_tensor = torch.FloatTensor(recent_audio[-Config.SAMPLE_RATE:])
                embedding = self.encoder.extract_embedding(audio_tensor)
                speaker_id, similarity = self.detector.detect_speaker(embedding)
            else:
                speaker_id, similarity = 0, 1.0
            
            # Display with speaker color
            color = COLORS[speaker_id % len(COLORS)]
            print(f"{color}Speaker {speaker_id + 1}: {text}{RESET}")
            
        except Exception as e:
            print(f"Error processing text: {e}")
            print(f"Text: {text}")

class RealTimeSpeakerDetection:
    """Main application class"""
    
    def __init__(self):
        self.processor = None
        self.running = False
        
        # Setup signal handlers for clean shutdown
        signal.signal(signal.SIGINT, self._signal_handler)
        signal.signal(signal.SIGTERM, self._signal_handler)
        atexit.register(self.cleanup)
    
    def _signal_handler(self, signum, frame):
        """Handle shutdown signals"""
        print(f"\nReceived signal {signum}, shutting down...")
        self.stop()
    
    def start(self):
        """Start the application"""
        print("=== Real-time Speaker Detection and Transcription ===")
        print("Initializing...")
        
        self.processor = TranscriptionProcessor()
        
        if not self.processor.start():
            print("Failed to start. Check your audio setup and dependencies.")
            return False
        
        self.running = True
        
        print("=" * 60)
        print("System ready! Listening for audio...")
        print("Different speakers will be shown in different colors.")
        print("Press Ctrl+C to stop.")
        print("=" * 60)
        
        # Keep main thread alive
        try:
            while self.running:
                time.sleep(1)
        except KeyboardInterrupt:
            pass
        
        return True
    
    def stop(self):
        """Stop the application"""
        if not self.running:
            return
            
        self.running = False
        
        if self.processor:
            self.processor.stop()
        
        print("System stopped.")
    
    def cleanup(self):
        """Cleanup resources"""
        self.stop()

def main():
    """Main entry point"""
    app = RealTimeSpeakerDetection()
    
    try:
        app.start()
    except Exception as e:
        print(f"Application error: {e}")
    finally:
        app.cleanup()

if __name__ == "__main__":
    main()