Saiyaswanth007's picture
Code Update
66992f6
raw
history blame
17 kB
import gradio as gr
import numpy as np
import torch
import torchaudio
from scipy.spatial.distance import cosine
import tempfile
import os
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
try:
from transformers import pipeline
except ImportError:
print("transformers not found. Install with: pip install transformers")
# Configuration
class Config:
# Audio settings
SAMPLE_RATE = 16000
# Speaker detection
CHANGE_THRESHOLD = 0.65
MAX_SPEAKERS = 4
MIN_SEGMENT_DURATION = 1.0
EMBEDDING_HISTORY_SIZE = 3
SPEAKER_MEMORY_SIZE = 20
# Console colors for speakers (HTML version)
SPEAKER_COLORS = [
"#FFD700", # Gold
"#FF6B6B", # Red
"#4ECDC4", # Teal
"#45B7D1", # Blue
"#96CEB4", # Mint
"#FFEAA7", # Light Yellow
"#DDA0DD", # Plum
"#98D8C8", # Mint Green
]
class SpeakerEncoder:
"""Simplified speaker encoder using torchaudio transforms"""
def __init__(self, device="cpu"):
self.device = device
self.embedding_dim = 128
self.model_loaded = False
self._setup_model()
def _setup_model(self):
"""Setup a simple MFCC-based feature extractor"""
try:
self.mfcc_transform = torchaudio.transforms.MFCC(
sample_rate=Config.SAMPLE_RATE,
n_mfcc=13,
melkwargs={"n_fft": 400, "hop_length": 160, "n_mels": 23}
).to(self.device)
self.model_loaded = True
print("Simple MFCC-based encoder initialized")
except Exception as e:
print(f"Error setting up encoder: {e}")
self.model_loaded = False
def extract_embedding(self, audio):
"""Extract speaker embedding from audio"""
if not self.model_loaded:
return np.zeros(self.embedding_dim)
try:
# Ensure audio is float32 and normalized
if isinstance(audio, np.ndarray):
audio = torch.from_numpy(audio).float()
# Normalize audio
if audio.abs().max() > 0:
audio = audio / audio.abs().max()
# Add batch dimension if needed
if audio.dim() == 1:
audio = audio.unsqueeze(0)
# Extract MFCC features
with torch.no_grad():
mfcc = self.mfcc_transform(audio)
# Simple statistics-based embedding
embedding = torch.cat([
mfcc.mean(dim=2).flatten(),
mfcc.std(dim=2).flatten(),
mfcc.max(dim=2)[0].flatten(),
mfcc.min(dim=2)[0].flatten()
])
# Pad or truncate to fixed size
if embedding.size(0) > self.embedding_dim:
embedding = embedding[:self.embedding_dim]
elif embedding.size(0) < self.embedding_dim:
padding = torch.zeros(self.embedding_dim - embedding.size(0))
embedding = torch.cat([embedding, padding])
return embedding.cpu().numpy()
except Exception as e:
print(f"Error extracting embedding: {e}")
return np.zeros(self.embedding_dim)
class SpeakerDetector:
"""Speaker change detection using embeddings"""
def __init__(self, threshold=Config.CHANGE_THRESHOLD, max_speakers=Config.MAX_SPEAKERS):
self.threshold = threshold
self.max_speakers = max_speakers
self.current_speaker = 0
self.speaker_embeddings = [[] for _ in range(max_speakers)]
self.speaker_centroids = [None] * max_speakers
self.active_speakers = {0}
def reset(self):
"""Reset speaker detection state"""
self.current_speaker = 0
self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
self.speaker_centroids = [None] * self.max_speakers
self.active_speakers = {0}
def detect_speaker(self, embedding):
"""Detect current speaker from embedding"""
# Initialize first speaker
if not self.speaker_embeddings[0]:
self.speaker_embeddings[0].append(embedding)
self.speaker_centroids[0] = embedding.copy()
return 0, 1.0
# Calculate similarity with current speaker
current_centroid = self.speaker_centroids[self.current_speaker]
if current_centroid is not None:
similarity = 1.0 - cosine(embedding, current_centroid)
else:
similarity = 0.0
# Check for speaker change
if similarity < self.threshold:
# Find best matching existing speaker
best_speaker = self.current_speaker
best_similarity = similarity
for speaker_id in self.active_speakers:
if speaker_id == self.current_speaker:
continue
centroid = self.speaker_centroids[speaker_id]
if centroid is not None:
sim = 1.0 - cosine(embedding, centroid)
if sim > best_similarity and sim > self.threshold:
best_similarity = sim
best_speaker = speaker_id
# Create new speaker if no good match and slots available
if (best_speaker == self.current_speaker and
len(self.active_speakers) < self.max_speakers):
for new_id in range(self.max_speakers):
if new_id not in self.active_speakers:
best_speaker = new_id
best_similarity = 0.0
self.active_speakers.add(new_id)
break
# Update current speaker if changed
if best_speaker != self.current_speaker:
self.current_speaker = best_speaker
similarity = best_similarity
# Update speaker model
self._update_speaker_model(self.current_speaker, embedding)
return self.current_speaker, similarity
def _update_speaker_model(self, speaker_id, embedding):
"""Update speaker model with new embedding"""
self.speaker_embeddings[speaker_id].append(embedding)
# Keep only recent embeddings
if len(self.speaker_embeddings[speaker_id]) > Config.SPEAKER_MEMORY_SIZE:
self.speaker_embeddings[speaker_id] = \
self.speaker_embeddings[speaker_id][-Config.SPEAKER_MEMORY_SIZE:]
# Update centroid
if self.speaker_embeddings[speaker_id]:
self.speaker_centroids[speaker_id] = np.mean(
self.speaker_embeddings[speaker_id], axis=0
)
class AudioProcessor:
"""Handles audio processing and transcription"""
def __init__(self):
self.encoder = SpeakerEncoder()
self.detector = SpeakerDetector()
# Initialize Whisper model for transcription
try:
self.transcriber = pipeline(
"automatic-speech-recognition",
model="openai/whisper-base",
chunk_length_s=30,
device=0 if torch.cuda.is_available() else -1
)
print("Whisper model loaded successfully")
except Exception as e:
print(f"Error loading Whisper model: {e}")
self.transcriber = None
def process_audio_file(self, audio_file):
"""Process uploaded audio file"""
if audio_file is None:
return "Please upload an audio file.", ""
try:
# Reset speaker detection for new file
self.detector.reset()
# Load audio file
waveform, sample_rate = torchaudio.load(audio_file)
# Convert to mono if stereo
if waveform.shape[0] > 1:
waveform = waveform.mean(dim=0, keepdim=True)
# Resample to 16kHz if needed
if sample_rate != Config.SAMPLE_RATE:
resampler = torchaudio.transforms.Resample(sample_rate, Config.SAMPLE_RATE)
waveform = resampler(waveform)
# Convert to numpy
audio_data = waveform.squeeze().numpy()
# Transcribe entire audio
if self.transcriber:
transcription_result = self.transcriber(audio_file)
full_transcription = transcription_result['text']
else:
full_transcription = "Transcription service unavailable"
# Process audio in chunks for speaker detection
chunk_duration = 3.0 # 3 second chunks
chunk_samples = int(chunk_duration * Config.SAMPLE_RATE)
results = []
for i in range(0, len(audio_data), chunk_samples // 2): # 50% overlap
chunk = audio_data[i:i + chunk_samples]
if len(chunk) < Config.SAMPLE_RATE: # Skip chunks less than 1 second
continue
# Extract speaker embedding
embedding = self.encoder.extract_embedding(chunk)
speaker_id, similarity = self.detector.detect_speaker(embedding)
# Get timestamp
start_time = i / Config.SAMPLE_RATE
end_time = (i + len(chunk)) / Config.SAMPLE_RATE
# Transcribe chunk
if self.transcriber and len(chunk) > Config.SAMPLE_RATE:
# Save chunk temporarily for transcription
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
torchaudio.save(tmp_file.name, torch.tensor(chunk).unsqueeze(0), Config.SAMPLE_RATE)
chunk_result = self.transcriber(tmp_file.name)
chunk_text = chunk_result['text'].strip()
os.unlink(tmp_file.name) # Clean up temp file
else:
chunk_text = ""
if chunk_text: # Only add if there's actual text
results.append({
'speaker_id': speaker_id,
'start_time': start_time,
'end_time': end_time,
'text': chunk_text,
'similarity': similarity
})
# Format results
formatted_output = self._format_results(results)
return formatted_output, full_transcription
except Exception as e:
return f"Error processing audio: {str(e)}", ""
def _format_results(self, results):
"""Format results with speaker colors"""
if not results:
return "No speech detected in the audio file."
formatted_lines = []
formatted_lines.append("๐ŸŽค **Speaker Diarization Results**\n")
for result in results:
speaker_id = result['speaker_id']
start_time = result['start_time']
end_time = result['end_time']
text = result['text']
similarity = result['similarity']
color = SPEAKER_COLORS[speaker_id % len(SPEAKER_COLORS)]
# Format timestamp
start_min, start_sec = divmod(int(start_time), 60)
end_min, end_sec = divmod(int(end_time), 60)
timestamp = f"[{start_min:02d}:{start_sec:02d} - {end_min:02d}:{end_sec:02d}]"
# Create colored HTML output
formatted_lines.append(
f'<div style="margin-bottom: 10px; padding: 8px; border-left: 4px solid {color}; background-color: {color}20;">'
f'<strong style="color: {color};">Speaker {speaker_id + 1}</strong> '
f'<span style="color: #666; font-size: 0.9em;">{timestamp}</span><br>'
f'<span style="color: #333;">{text}</span>'
f'</div>'
)
return "".join(formatted_lines)
# Global processor instance
processor = AudioProcessor()
def process_audio(audio_file, sensitivity):
"""Process audio file with speaker detection"""
if audio_file is None:
return "Please upload an audio file.", ""
# Update sensitivity
processor.detector.threshold = sensitivity
# Process the audio
diarized_output, full_transcription = processor.process_audio_file(audio_file)
return diarized_output, full_transcription
# Create Gradio interface
def create_interface():
"""Create Gradio interface"""
with gr.Blocks(
theme=gr.themes.Soft(),
title="Speaker Diarization & Transcription",
css="""
.gradio-container {
max-width: 1200px !important;
}
.speaker-output {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
"""
) as demo:
gr.Markdown(
"""
# ๐ŸŽ™๏ธ Speaker Diarization & Transcription
Upload an audio file to automatically detect different speakers and transcribe their speech.
The system will identify speaker changes and display each speaker's text in different colors.
"""
)
with gr.Row():
with gr.Column(scale=1):
audio_input = gr.Audio(
label="Upload Audio File",
type="filepath",
sources=["upload", "microphone"]
)
sensitivity_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.65,
step=0.05,
label="Speaker Change Sensitivity",
info="Lower values = more sensitive to speaker changes"
)
process_btn = gr.Button("๐ŸŽฏ Process Audio", variant="primary", size="lg")
gr.Markdown(
"""
### Instructions:
1. Upload an audio file (WAV, MP3, etc.)
2. Adjust sensitivity if needed
3. Click "Process Audio"
4. View results with speaker colors
### Tips:
- Works best with clear speech
- Supports multiple file formats
- Different speakers shown in different colors
- Processing may take a moment for longer files
"""
)
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("๐ŸŽจ Speaker Diarization"):
diarized_output = gr.HTML(
label="Speaker Diarization Results",
elem_classes=["speaker-output"]
)
with gr.TabItem("๐Ÿ“ Full Transcription"):
full_transcription = gr.Textbox(
label="Complete Transcription",
lines=15,
max_lines=20,
show_copy_button=True
)
# Event handlers
process_btn.click(
fn=process_audio,
inputs=[audio_input, sensitivity_slider],
outputs=[diarized_output, full_transcription],
show_progress=True
)
# Auto-process when audio is uploaded
audio_input.change(
fn=process_audio,
inputs=[audio_input, sensitivity_slider],
outputs=[diarized_output, full_transcription],
show_progress=True
)
gr.Markdown(
"""
---
### About
This application uses:
- **MFCC features** for speaker embedding extraction
- **Cosine similarity** for speaker change detection
- **OpenAI Whisper** for speech-to-text transcription
- **Gradio** for the web interface
**Note**: This is a simplified speaker diarization system. For production use,
consider more advanced speaker embedding models like speechbrain or pyannote.audio.
"""
)
return demo
# Create and launch the interface
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
)