Saiyaswanth007's picture
requirements
af81629
raw
history blame
19 kB
import gradio as gr
import numpy as np
import torch
import torchaudio
import threading
import queue
import time
import os
import urllib.request
from scipy.spatial.distance import cosine
from collections import deque
import tempfile
import librosa
# Configuration parameters
FINAL_TRANSCRIPTION_MODEL = "openai/whisper-small"
TRANSCRIPTION_LANGUAGE = "en"
DEFAULT_CHANGE_THRESHOLD = 0.7
EMBEDDING_HISTORY_SIZE = 5
MIN_SEGMENT_DURATION = 1.0
DEFAULT_MAX_SPEAKERS = 4
ABSOLUTE_MAX_SPEAKERS = 6
SAMPLE_RATE = 16000
# Speaker colors for up to 6 speakers
SPEAKER_COLORS = [
"#FFD700", # Gold
"#FF6B6B", # Red
"#4ECDC4", # Teal
"#45B7D1", # Blue
"#96CEB4", # Green
"#FFEAA7", # Yellow
]
SPEAKER_COLOR_NAMES = [
"Gold", "Red", "Teal", "Blue", "Green", "Yellow"
]
class SpeechBrainEncoder:
"""Simplified encoder for speaker embeddings using torch audio features"""
def __init__(self, device="cpu"):
self.device = device
self.embedding_dim = 128
self.model_loaded = True
def load_model(self):
"""Model loading simulation"""
return True
def embed_utterance(self, audio, sr=16000):
"""Extract simple spectral features as speaker embedding"""
try:
if isinstance(audio, np.ndarray):
waveform = torch.tensor(audio, dtype=torch.float32)
else:
waveform = audio
if len(waveform.shape) == 1:
waveform = waveform.unsqueeze(0)
# Resample if needed
if sr != 16000:
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
# Extract MFCC features as a simple embedding
mfcc_transform = torchaudio.transforms.MFCC(
sample_rate=16000,
n_mfcc=13,
melkwargs={'n_mels': 40}
)
mfcc = mfcc_transform(waveform)
# Take mean across time dimension and flatten
embedding = mfcc.mean(dim=2).flatten()
# Pad or truncate to fixed size
if len(embedding) > self.embedding_dim:
embedding = embedding[:self.embedding_dim]
elif len(embedding) < self.embedding_dim:
padding = torch.zeros(self.embedding_dim - len(embedding))
embedding = torch.cat([embedding, padding])
return embedding.numpy()
except Exception as e:
print(f"Error extracting embedding: {e}")
return np.random.randn(self.embedding_dim)
class SpeakerChangeDetector:
"""Speaker change detector for real-time diarization"""
def __init__(self, embedding_dim=128, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
self.embedding_dim = embedding_dim
self.change_threshold = change_threshold
self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
self.current_speaker = 0
self.previous_embeddings = []
self.last_change_time = time.time()
self.mean_embeddings = [None] * self.max_speakers
self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
self.last_similarity = 0.0
self.active_speakers = set([0])
def set_max_speakers(self, max_speakers):
"""Update the maximum number of speakers"""
new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
if new_max < self.max_speakers:
for speaker_id in list(self.active_speakers):
if speaker_id >= new_max:
self.active_speakers.discard(speaker_id)
if self.current_speaker >= new_max:
self.current_speaker = 0
if new_max > self.max_speakers:
self.mean_embeddings.extend([None] * (new_max - self.max_speakers))
self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
else:
self.mean_embeddings = self.mean_embeddings[:new_max]
self.speaker_embeddings = self.speaker_embeddings[:new_max]
self.max_speakers = new_max
def set_change_threshold(self, threshold):
"""Update the threshold for detecting speaker changes"""
self.change_threshold = max(0.1, min(threshold, 0.99))
def add_embedding(self, embedding, timestamp=None):
"""Add a new embedding and check if there's a speaker change"""
current_time = timestamp or time.time()
if not self.previous_embeddings:
self.previous_embeddings.append(embedding)
self.speaker_embeddings[self.current_speaker].append(embedding)
if self.mean_embeddings[self.current_speaker] is None:
self.mean_embeddings[self.current_speaker] = embedding.copy()
return self.current_speaker, 1.0
current_mean = self.mean_embeddings[self.current_speaker]
if current_mean is not None:
similarity = 1.0 - cosine(embedding, current_mean)
else:
similarity = 1.0 - cosine(embedding, self.previous_embeddings[-1])
self.last_similarity = similarity
time_since_last_change = current_time - self.last_change_time
is_speaker_change = False
if time_since_last_change >= MIN_SEGMENT_DURATION:
if similarity < self.change_threshold:
best_speaker = self.current_speaker
best_similarity = similarity
for speaker_id in range(self.max_speakers):
if speaker_id == self.current_speaker:
continue
speaker_mean = self.mean_embeddings[speaker_id]
if speaker_mean is not None:
speaker_similarity = 1.0 - cosine(embedding, speaker_mean)
if speaker_similarity > best_similarity:
best_similarity = speaker_similarity
best_speaker = speaker_id
if best_speaker != self.current_speaker:
is_speaker_change = True
self.current_speaker = best_speaker
elif len(self.active_speakers) < self.max_speakers:
for new_id in range(self.max_speakers):
if new_id not in self.active_speakers:
is_speaker_change = True
self.current_speaker = new_id
self.active_speakers.add(new_id)
break
if is_speaker_change:
self.last_change_time = current_time
self.previous_embeddings.append(embedding)
if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE:
self.previous_embeddings.pop(0)
self.speaker_embeddings[self.current_speaker].append(embedding)
self.active_speakers.add(self.current_speaker)
if len(self.speaker_embeddings[self.current_speaker]) > 30:
self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-30:]
if self.speaker_embeddings[self.current_speaker]:
self.mean_embeddings[self.current_speaker] = np.mean(
self.speaker_embeddings[self.current_speaker], axis=0
)
return self.current_speaker, similarity
def get_color_for_speaker(self, speaker_id):
"""Return color for speaker ID"""
if 0 <= speaker_id < len(SPEAKER_COLORS):
return SPEAKER_COLORS[speaker_id]
return "#FFFFFF"
class RealTimeASRDiarization:
"""Main class for real-time ASR with speaker diarization"""
def __init__(self):
self.encoder = SpeechBrainEncoder()
self.encoder.load_model()
self.speaker_detector = SpeakerChangeDetector()
self.transcription_queue = queue.Queue()
self.conversation_history = []
self.is_processing = False
# Load Whisper model
try:
import whisper
self.whisper_model = whisper.load_model("base")
except ImportError:
print("Whisper not available, using mock transcription")
self.whisper_model = None
def transcribe_audio(self, audio_data, sr=16000):
"""Transcribe audio using Whisper"""
try:
if self.whisper_model is None:
return "Mock transcription: Hello, this is a test."
# Ensure audio is the right format
if isinstance(audio_data, tuple):
sr, audio_data = audio_data
if len(audio_data.shape) > 1:
audio_data = audio_data.mean(axis=1)
# Normalize audio
audio_data = audio_data.astype(np.float32)
if np.abs(audio_data).max() > 1.0:
audio_data = audio_data / np.abs(audio_data).max()
# Resample to 16kHz if needed
if sr != 16000:
audio_data = librosa.resample(audio_data, orig_sr=sr, target_sr=16000)
# Transcribe
result = self.whisper_model.transcribe(audio_data, language="en")
return result["text"].strip()
except Exception as e:
print(f"Transcription error: {e}")
return ""
def extract_speaker_embedding(self, audio_data, sr=16000):
"""Extract speaker embedding from audio"""
return self.encoder.embed_utterance(audio_data, sr)
def process_audio_segment(self, audio_data, sr=16000):
"""Process an audio segment for transcription and speaker identification"""
if len(audio_data) < sr * 0.5: # Skip very short segments
return None, None, None
# Transcribe the audio
transcription = self.transcribe_audio(audio_data, sr)
if not transcription:
return None, None, None
# Extract speaker embedding
embedding = self.extract_speaker_embedding(audio_data, sr)
# Detect speaker
speaker_id, similarity = self.speaker_detector.add_embedding(embedding)
return transcription, speaker_id, similarity
def update_conversation(self, transcription, speaker_id):
"""Update conversation history with new transcription"""
speaker_name = f"Speaker {speaker_id + 1}"
color = self.speaker_detector.get_color_for_speaker(speaker_id)
entry = {
"speaker": speaker_name,
"text": transcription,
"color": color,
"timestamp": time.time()
}
self.conversation_history.append(entry)
return entry
def format_conversation_html(self):
"""Format conversation history as HTML"""
if not self.conversation_history:
return "<p><i>No conversation yet. Start speaking to see real-time transcription with speaker diarization.</i></p>"
html_parts = []
for entry in self.conversation_history:
html_parts.append(
f'<p><span style="color: {entry["color"]}; font-weight: bold;">'
f'{entry["speaker"]}:</span> {entry["text"]}</p>'
)
return "".join(html_parts)
def get_status_info(self):
"""Get current status information"""
status = {
"active_speakers": len(self.speaker_detector.active_speakers),
"max_speakers": self.speaker_detector.max_speakers,
"current_speaker": self.speaker_detector.current_speaker + 1,
"total_segments": len(self.conversation_history),
"threshold": self.speaker_detector.change_threshold
}
return status
def clear_conversation(self):
"""Clear conversation history and reset speaker detector"""
self.conversation_history = []
self.speaker_detector = SpeakerChangeDetector(
change_threshold=self.speaker_detector.change_threshold,
max_speakers=self.speaker_detector.max_speakers
)
def set_parameters(self, threshold, max_speakers):
"""Update parameters"""
self.speaker_detector.set_change_threshold(threshold)
self.speaker_detector.set_max_speakers(max_speakers)
# Global instance
asr_system = RealTimeASRDiarization()
def process_audio_realtime(audio_data, threshold, max_speakers):
"""Process audio in real-time"""
global asr_system
if audio_data is None:
return asr_system.format_conversation_html(), get_status_display()
# Update parameters
asr_system.set_parameters(threshold, max_speakers)
try:
# Process the audio segment
sr, audio_array = audio_data
# Convert to float32 and normalize
if audio_array.dtype != np.float32:
audio_array = audio_array.astype(np.float32)
if audio_array.dtype == np.int16:
audio_array = audio_array / 32768.0
elif audio_array.dtype == np.int32:
audio_array = audio_array / 2147483648.0
# Process the audio segment
transcription, speaker_id, similarity = asr_system.process_audio_segment(audio_array, sr)
if transcription and speaker_id is not None:
# Update conversation
asr_system.update_conversation(transcription, speaker_id)
except Exception as e:
print(f"Error processing audio: {e}")
return asr_system.format_conversation_html(), get_status_display()
def get_status_display():
"""Get formatted status display"""
status = asr_system.get_status_info()
status_html = f"""
<div style="font-family: monospace; font-size: 12px;">
<strong>Status:</strong><br>
Current Speaker: {status['current_speaker']}<br>
Active Speakers: {status['active_speakers']} / {status['max_speakers']}<br>
Total Segments: {status['total_segments']}<br>
Threshold: {status['threshold']:.2f}<br>
</div>
"""
return status_html
def clear_conversation():
"""Clear the conversation"""
global asr_system
asr_system.clear_conversation()
return asr_system.format_conversation_html(), get_status_display()
def create_interface():
"""Create Gradio interface"""
with gr.Blocks(
title="Real-time ASR with Speaker Diarization",
theme=gr.themes.Soft(),
css="""
.conversation-box {
height: 400px;
overflow-y: auto;
border: 1px solid #ddd;
padding: 10px;
background-color: #f9f9f9;
}
.status-box {
border: 1px solid #ccc;
padding: 10px;
background-color: #f0f0f0;
}
"""
) as demo:
gr.Markdown(
"""
# 🎤 Real-time ASR with Live Speaker Diarization
This application provides real-time speech recognition with speaker diarization.
It can distinguish between different speakers and display their conversations in different colors.
**Instructions:**
1. Adjust the speaker change threshold and maximum speakers
2. Click the microphone button to start recording
3. Speak naturally - the system will detect speaker changes and transcribe speech
4. Each speaker will be assigned a different color
"""
)
with gr.Row():
with gr.Column(scale=3):
# Main conversation display
conversation_display = gr.HTML(
value="<p><i>Click the microphone to start recording...</i></p>",
elem_classes=["conversation-box"]
)
# Audio input
audio_input = gr.Audio(
source="microphone",
type="numpy",
streaming=True,
label="🎤 Microphone Input"
)
with gr.Column(scale=1):
# Controls
gr.Markdown("### Controls")
threshold_slider = gr.Slider(
minimum=0.1,
maximum=0.9,
value=DEFAULT_CHANGE_THRESHOLD,
step=0.05,
label="Speaker Change Threshold",
info="Higher values = less sensitive to speaker changes"
)
max_speakers_slider = gr.Slider(
minimum=2,
maximum=ABSOLUTE_MAX_SPEAKERS,
value=DEFAULT_MAX_SPEAKERS,
step=1,
label="Maximum Speakers",
info="Maximum number of different speakers to detect"
)
clear_btn = gr.Button("🗑️ Clear Conversation", variant="secondary")
# Status display
gr.Markdown("### Status")
status_display = gr.HTML(
value=get_status_display(),
elem_classes=["status-box"]
)
# Speaker color legend
gr.Markdown("### Speaker Colors")
legend_html = ""
for i in range(ABSOLUTE_MAX_SPEAKERS):
color = SPEAKER_COLORS[i]
name = SPEAKER_COLOR_NAMES[i]
legend_html += f'<p><span style="color: {color}; font-weight: bold;">● Speaker {i+1} ({name})</span></p>'
gr.HTML(legend_html)
# Event handlers
audio_input.change(
fn=process_audio_realtime,
inputs=[audio_input, threshold_slider, max_speakers_slider],
outputs=[conversation_display, status_display],
show_progress=False
)
clear_btn.click(
fn=clear_conversation,
outputs=[conversation_display, status_display]
)
# Update status periodically
demo.load(
fn=lambda: (asr_system.format_conversation_html(), get_status_display()),
outputs=[conversation_display, status_display],
every=2
)
return demo
if __name__ == "__main__":
# Create and launch the interface
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
)