Spaces:
Sleeping
Sleeping
File size: 19,035 Bytes
66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 66992f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
import gradio as gr
import numpy as np
import torch
import torchaudio
import threading
import queue
import time
import os
import urllib.request
from scipy.spatial.distance import cosine
from collections import deque
import tempfile
import librosa
# Configuration parameters
FINAL_TRANSCRIPTION_MODEL = "openai/whisper-small"
TRANSCRIPTION_LANGUAGE = "en"
DEFAULT_CHANGE_THRESHOLD = 0.7
EMBEDDING_HISTORY_SIZE = 5
MIN_SEGMENT_DURATION = 1.0
DEFAULT_MAX_SPEAKERS = 4
ABSOLUTE_MAX_SPEAKERS = 6
SAMPLE_RATE = 16000
# Speaker colors for up to 6 speakers
SPEAKER_COLORS = [
"#FFD700", # Gold
"#FF6B6B", # Red
"#4ECDC4", # Teal
"#45B7D1", # Blue
"#96CEB4", # Green
"#FFEAA7", # Yellow
]
SPEAKER_COLOR_NAMES = [
"Gold", "Red", "Teal", "Blue", "Green", "Yellow"
]
class SpeechBrainEncoder:
"""Simplified encoder for speaker embeddings using torch audio features"""
def __init__(self, device="cpu"):
self.device = device
self.embedding_dim = 128
self.model_loaded = True
def load_model(self):
"""Model loading simulation"""
return True
def embed_utterance(self, audio, sr=16000):
"""Extract simple spectral features as speaker embedding"""
try:
if isinstance(audio, np.ndarray):
waveform = torch.tensor(audio, dtype=torch.float32)
else:
waveform = audio
if len(waveform.shape) == 1:
waveform = waveform.unsqueeze(0)
# Resample if needed
if sr != 16000:
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
# Extract MFCC features as a simple embedding
mfcc_transform = torchaudio.transforms.MFCC(
sample_rate=16000,
n_mfcc=13,
melkwargs={'n_mels': 40}
)
mfcc = mfcc_transform(waveform)
# Take mean across time dimension and flatten
embedding = mfcc.mean(dim=2).flatten()
# Pad or truncate to fixed size
if len(embedding) > self.embedding_dim:
embedding = embedding[:self.embedding_dim]
elif len(embedding) < self.embedding_dim:
padding = torch.zeros(self.embedding_dim - len(embedding))
embedding = torch.cat([embedding, padding])
return embedding.numpy()
except Exception as e:
print(f"Error extracting embedding: {e}")
return np.random.randn(self.embedding_dim)
class SpeakerChangeDetector:
"""Speaker change detector for real-time diarization"""
def __init__(self, embedding_dim=128, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
self.embedding_dim = embedding_dim
self.change_threshold = change_threshold
self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
self.current_speaker = 0
self.previous_embeddings = []
self.last_change_time = time.time()
self.mean_embeddings = [None] * self.max_speakers
self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
self.last_similarity = 0.0
self.active_speakers = set([0])
def set_max_speakers(self, max_speakers):
"""Update the maximum number of speakers"""
new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
if new_max < self.max_speakers:
for speaker_id in list(self.active_speakers):
if speaker_id >= new_max:
self.active_speakers.discard(speaker_id)
if self.current_speaker >= new_max:
self.current_speaker = 0
if new_max > self.max_speakers:
self.mean_embeddings.extend([None] * (new_max - self.max_speakers))
self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
else:
self.mean_embeddings = self.mean_embeddings[:new_max]
self.speaker_embeddings = self.speaker_embeddings[:new_max]
self.max_speakers = new_max
def set_change_threshold(self, threshold):
"""Update the threshold for detecting speaker changes"""
self.change_threshold = max(0.1, min(threshold, 0.99))
def add_embedding(self, embedding, timestamp=None):
"""Add a new embedding and check if there's a speaker change"""
current_time = timestamp or time.time()
if not self.previous_embeddings:
self.previous_embeddings.append(embedding)
self.speaker_embeddings[self.current_speaker].append(embedding)
if self.mean_embeddings[self.current_speaker] is None:
self.mean_embeddings[self.current_speaker] = embedding.copy()
return self.current_speaker, 1.0
current_mean = self.mean_embeddings[self.current_speaker]
if current_mean is not None:
similarity = 1.0 - cosine(embedding, current_mean)
else:
similarity = 1.0 - cosine(embedding, self.previous_embeddings[-1])
self.last_similarity = similarity
time_since_last_change = current_time - self.last_change_time
is_speaker_change = False
if time_since_last_change >= MIN_SEGMENT_DURATION:
if similarity < self.change_threshold:
best_speaker = self.current_speaker
best_similarity = similarity
for speaker_id in range(self.max_speakers):
if speaker_id == self.current_speaker:
continue
speaker_mean = self.mean_embeddings[speaker_id]
if speaker_mean is not None:
speaker_similarity = 1.0 - cosine(embedding, speaker_mean)
if speaker_similarity > best_similarity:
best_similarity = speaker_similarity
best_speaker = speaker_id
if best_speaker != self.current_speaker:
is_speaker_change = True
self.current_speaker = best_speaker
elif len(self.active_speakers) < self.max_speakers:
for new_id in range(self.max_speakers):
if new_id not in self.active_speakers:
is_speaker_change = True
self.current_speaker = new_id
self.active_speakers.add(new_id)
break
if is_speaker_change:
self.last_change_time = current_time
self.previous_embeddings.append(embedding)
if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE:
self.previous_embeddings.pop(0)
self.speaker_embeddings[self.current_speaker].append(embedding)
self.active_speakers.add(self.current_speaker)
if len(self.speaker_embeddings[self.current_speaker]) > 30:
self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-30:]
if self.speaker_embeddings[self.current_speaker]:
self.mean_embeddings[self.current_speaker] = np.mean(
self.speaker_embeddings[self.current_speaker], axis=0
)
return self.current_speaker, similarity
def get_color_for_speaker(self, speaker_id):
"""Return color for speaker ID"""
if 0 <= speaker_id < len(SPEAKER_COLORS):
return SPEAKER_COLORS[speaker_id]
return "#FFFFFF"
class RealTimeASRDiarization:
"""Main class for real-time ASR with speaker diarization"""
def __init__(self):
self.encoder = SpeechBrainEncoder()
self.encoder.load_model()
self.speaker_detector = SpeakerChangeDetector()
self.transcription_queue = queue.Queue()
self.conversation_history = []
self.is_processing = False
# Load Whisper model
try:
import whisper
self.whisper_model = whisper.load_model("base")
except ImportError:
print("Whisper not available, using mock transcription")
self.whisper_model = None
def transcribe_audio(self, audio_data, sr=16000):
"""Transcribe audio using Whisper"""
try:
if self.whisper_model is None:
return "Mock transcription: Hello, this is a test."
# Ensure audio is the right format
if isinstance(audio_data, tuple):
sr, audio_data = audio_data
if len(audio_data.shape) > 1:
audio_data = audio_data.mean(axis=1)
# Normalize audio
audio_data = audio_data.astype(np.float32)
if np.abs(audio_data).max() > 1.0:
audio_data = audio_data / np.abs(audio_data).max()
# Resample to 16kHz if needed
if sr != 16000:
audio_data = librosa.resample(audio_data, orig_sr=sr, target_sr=16000)
# Transcribe
result = self.whisper_model.transcribe(audio_data, language="en")
return result["text"].strip()
except Exception as e:
print(f"Transcription error: {e}")
return ""
def extract_speaker_embedding(self, audio_data, sr=16000):
"""Extract speaker embedding from audio"""
return self.encoder.embed_utterance(audio_data, sr)
def process_audio_segment(self, audio_data, sr=16000):
"""Process an audio segment for transcription and speaker identification"""
if len(audio_data) < sr * 0.5: # Skip very short segments
return None, None, None
# Transcribe the audio
transcription = self.transcribe_audio(audio_data, sr)
if not transcription:
return None, None, None
# Extract speaker embedding
embedding = self.extract_speaker_embedding(audio_data, sr)
# Detect speaker
speaker_id, similarity = self.speaker_detector.add_embedding(embedding)
return transcription, speaker_id, similarity
def update_conversation(self, transcription, speaker_id):
"""Update conversation history with new transcription"""
speaker_name = f"Speaker {speaker_id + 1}"
color = self.speaker_detector.get_color_for_speaker(speaker_id)
entry = {
"speaker": speaker_name,
"text": transcription,
"color": color,
"timestamp": time.time()
}
self.conversation_history.append(entry)
return entry
def format_conversation_html(self):
"""Format conversation history as HTML"""
if not self.conversation_history:
return "<p><i>No conversation yet. Start speaking to see real-time transcription with speaker diarization.</i></p>"
html_parts = []
for entry in self.conversation_history:
html_parts.append(
f'<p><span style="color: {entry["color"]}; font-weight: bold;">'
f'{entry["speaker"]}:</span> {entry["text"]}</p>'
)
return "".join(html_parts)
def get_status_info(self):
"""Get current status information"""
status = {
"active_speakers": len(self.speaker_detector.active_speakers),
"max_speakers": self.speaker_detector.max_speakers,
"current_speaker": self.speaker_detector.current_speaker + 1,
"total_segments": len(self.conversation_history),
"threshold": self.speaker_detector.change_threshold
}
return status
def clear_conversation(self):
"""Clear conversation history and reset speaker detector"""
self.conversation_history = []
self.speaker_detector = SpeakerChangeDetector(
change_threshold=self.speaker_detector.change_threshold,
max_speakers=self.speaker_detector.max_speakers
)
def set_parameters(self, threshold, max_speakers):
"""Update parameters"""
self.speaker_detector.set_change_threshold(threshold)
self.speaker_detector.set_max_speakers(max_speakers)
# Global instance
asr_system = RealTimeASRDiarization()
def process_audio_realtime(audio_data, threshold, max_speakers):
"""Process audio in real-time"""
global asr_system
if audio_data is None:
return asr_system.format_conversation_html(), get_status_display()
# Update parameters
asr_system.set_parameters(threshold, max_speakers)
try:
# Process the audio segment
sr, audio_array = audio_data
# Convert to float32 and normalize
if audio_array.dtype != np.float32:
audio_array = audio_array.astype(np.float32)
if audio_array.dtype == np.int16:
audio_array = audio_array / 32768.0
elif audio_array.dtype == np.int32:
audio_array = audio_array / 2147483648.0
# Process the audio segment
transcription, speaker_id, similarity = asr_system.process_audio_segment(audio_array, sr)
if transcription and speaker_id is not None:
# Update conversation
asr_system.update_conversation(transcription, speaker_id)
except Exception as e:
print(f"Error processing audio: {e}")
return asr_system.format_conversation_html(), get_status_display()
def get_status_display():
"""Get formatted status display"""
status = asr_system.get_status_info()
status_html = f"""
<div style="font-family: monospace; font-size: 12px;">
<strong>Status:</strong><br>
Current Speaker: {status['current_speaker']}<br>
Active Speakers: {status['active_speakers']} / {status['max_speakers']}<br>
Total Segments: {status['total_segments']}<br>
Threshold: {status['threshold']:.2f}<br>
</div>
"""
return status_html
def clear_conversation():
"""Clear the conversation"""
global asr_system
asr_system.clear_conversation()
return asr_system.format_conversation_html(), get_status_display()
def create_interface():
"""Create Gradio interface"""
with gr.Blocks(
title="Real-time ASR with Speaker Diarization",
theme=gr.themes.Soft(),
css="""
.conversation-box {
height: 400px;
overflow-y: auto;
border: 1px solid #ddd;
padding: 10px;
background-color: #f9f9f9;
}
.status-box {
border: 1px solid #ccc;
padding: 10px;
background-color: #f0f0f0;
}
"""
) as demo:
gr.Markdown(
"""
# 🎤 Real-time ASR with Live Speaker Diarization
This application provides real-time speech recognition with speaker diarization.
It can distinguish between different speakers and display their conversations in different colors.
**Instructions:**
1. Adjust the speaker change threshold and maximum speakers
2. Click the microphone button to start recording
3. Speak naturally - the system will detect speaker changes and transcribe speech
4. Each speaker will be assigned a different color
"""
)
with gr.Row():
with gr.Column(scale=3):
# Main conversation display
conversation_display = gr.HTML(
value="<p><i>Click the microphone to start recording...</i></p>",
elem_classes=["conversation-box"]
)
# Audio input
audio_input = gr.Audio(
source="microphone",
type="numpy",
streaming=True,
label="🎤 Microphone Input"
)
with gr.Column(scale=1):
# Controls
gr.Markdown("### Controls")
threshold_slider = gr.Slider(
minimum=0.1,
maximum=0.9,
value=DEFAULT_CHANGE_THRESHOLD,
step=0.05,
label="Speaker Change Threshold",
info="Higher values = less sensitive to speaker changes"
)
max_speakers_slider = gr.Slider(
minimum=2,
maximum=ABSOLUTE_MAX_SPEAKERS,
value=DEFAULT_MAX_SPEAKERS,
step=1,
label="Maximum Speakers",
info="Maximum number of different speakers to detect"
)
clear_btn = gr.Button("🗑️ Clear Conversation", variant="secondary")
# Status display
gr.Markdown("### Status")
status_display = gr.HTML(
value=get_status_display(),
elem_classes=["status-box"]
)
# Speaker color legend
gr.Markdown("### Speaker Colors")
legend_html = ""
for i in range(ABSOLUTE_MAX_SPEAKERS):
color = SPEAKER_COLORS[i]
name = SPEAKER_COLOR_NAMES[i]
legend_html += f'<p><span style="color: {color}; font-weight: bold;">● Speaker {i+1} ({name})</span></p>'
gr.HTML(legend_html)
# Event handlers
audio_input.change(
fn=process_audio_realtime,
inputs=[audio_input, threshold_slider, max_speakers_slider],
outputs=[conversation_display, status_display],
show_progress=False
)
clear_btn.click(
fn=clear_conversation,
outputs=[conversation_display, status_display]
)
# Update status periodically
demo.load(
fn=lambda: (asr_system.format_conversation_html(), get_status_display()),
outputs=[conversation_display, status_display],
every=2
)
return demo
if __name__ == "__main__":
# Create and launch the interface
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
)
|