Real_Time_diarization / realtime_diarize.py
Saiyaswanth007's picture
Code fixing
b37c0fc
raw
history blame
37.4 kB
from PyQt6.QtWidgets import (QApplication, QTextEdit, QMainWindow, QLabel, QVBoxLayout, QWidget,
QHBoxLayout, QPushButton, QSizePolicy, QGroupBox, QSlider, QSpinBox)
from PyQt6.QtCore import Qt, pyqtSignal, QThread, QEvent, QTimer
from scipy.spatial.distance import cosine
from RealtimeSTT import AudioToTextRecorder
import numpy as np
import soundcard as sc
import queue
import torch
import time
import sys
import os
import urllib.request
import torchaudio
# Simplified configuration parameters
SILENCE_THRESHS = [0, 0.4]
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
FINAL_BEAM_SIZE = 5
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
REALTIME_BEAM_SIZE = 5
TRANSCRIPTION_LANGUAGE = "en" # Accuracy in languages ​​other than English is very low.
SILERO_SENSITIVITY = 0.4
WEBRTC_SENSITIVITY = 3
MIN_LENGTH_OF_RECORDING = 0.7
PRE_RECORDING_BUFFER_DURATION = 0.35
# Speaker change detection parameters
DEFAULT_CHANGE_THRESHOLD = 0.7 # Threshold for detecting speaker change
EMBEDDING_HISTORY_SIZE = 5 # Number of embeddings to keep for comparison
MIN_SEGMENT_DURATION = 1.0 # Minimum duration before considering a speaker change
DEFAULT_MAX_SPEAKERS = 4 # Default maximum number of speakers
ABSOLUTE_MAX_SPEAKERS = 10 # Absolute maximum number of speakers allowed
# Global variables
FAST_SENTENCE_END = True
USE_MICROPHONE = False
SAMPLE_RATE = 16000
BUFFER_SIZE = 512
CHANNELS = 1
# Speaker colors - now we have colors for up to 10 speakers
SPEAKER_COLORS = [
"#FFFF00", # Yellow
"#FF0000", # Red
"#00FF00", # Green
"#00FFFF", # Cyan
"#FF00FF", # Magenta
"#0000FF", # Blue
"#FF8000", # Orange
"#00FF80", # Spring Green
"#8000FF", # Purple
"#FFFFFF", # White
]
# Color names for display
SPEAKER_COLOR_NAMES = [
"Yellow",
"Red",
"Green",
"Cyan",
"Magenta",
"Blue",
"Orange",
"Spring Green",
"Purple",
"White"
]
class SpeechBrainEncoder:
"""ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
def __init__(self, device="cpu"):
self.device = device
self.model = None
self.embedding_dim = 192 # ECAPA-TDNN default dimension
self.model_loaded = False
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
os.makedirs(self.cache_dir, exist_ok=True)
def _download_model(self):
"""Download pre-trained SpeechBrain ECAPA-TDNN model if not present"""
model_url = "https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb/resolve/main/embedding_model.ckpt"
model_path = os.path.join(self.cache_dir, "embedding_model.ckpt")
if not os.path.exists(model_path):
print(f"Downloading ECAPA-TDNN model to {model_path}...")
urllib.request.urlretrieve(model_url, model_path)
return model_path
def load_model(self):
"""Load the ECAPA-TDNN model"""
try:
# Import SpeechBrain
from speechbrain.pretrained import EncoderClassifier
# Get model path
model_path = self._download_model()
# Load the pre-trained model
self.model = EncoderClassifier.from_hparams(
source="speechbrain/spkrec-ecapa-voxceleb",
savedir=self.cache_dir,
run_opts={"device": self.device}
)
self.model_loaded = True
return True
except Exception as e:
print(f"Error loading ECAPA-TDNN model: {e}")
return False
def embed_utterance(self, audio, sr=16000):
"""Extract speaker embedding from audio"""
if not self.model_loaded:
raise ValueError("Model not loaded. Call load_model() first.")
try:
# Convert numpy array to torch tensor
if isinstance(audio, np.ndarray):
waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0)
else:
waveform = audio.unsqueeze(0)
# Ensure sample rate matches model expected rate
if sr != 16000:
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
# Get embedding
with torch.no_grad():
embedding = self.model.encode_batch(waveform)
return embedding.squeeze().cpu().numpy()
except Exception as e:
print(f"Error extracting embedding: {e}")
return np.zeros(self.embedding_dim)
class AudioProcessor:
"""Processes audio data to extract speaker embeddings"""
def __init__(self, encoder):
self.encoder = encoder
def extract_embedding(self, audio_int16):
try:
# Convert int16 audio data to float32
float_audio = audio_int16.astype(np.float32) / 32768.0
# Normalize if needed
if np.abs(float_audio).max() > 1.0:
float_audio = float_audio / np.abs(float_audio).max()
# Extract embedding using the loaded encoder
embedding = self.encoder.embed_utterance(float_audio)
return embedding
except Exception as e:
print(f"Embedding extraction error: {e}")
return np.zeros(self.encoder.embedding_dim)
class EncoderLoaderThread(QThread):
"""Thread for loading the speaker encoder model"""
model_loaded = pyqtSignal(object)
progress_update = pyqtSignal(str)
def run(self):
try:
self.progress_update.emit("Initializing speaker encoder model...")
# Check device
device_str = "cuda" if torch.cuda.is_available() else "cpu"
self.progress_update.emit(f"Using device: {device_str}")
# Create SpeechBrain encoder
self.progress_update.emit("Loading ECAPA-TDNN model...")
encoder = SpeechBrainEncoder(device=device_str)
# Load the model
success = encoder.load_model()
if success:
self.progress_update.emit("ECAPA-TDNN model loading complete!")
self.model_loaded.emit(encoder)
else:
self.progress_update.emit("Failed to load ECAPA-TDNN model. Using fallback...")
self.model_loaded.emit(None)
except Exception as e:
self.progress_update.emit(f"Model loading error: {e}")
self.model_loaded.emit(None)
class SpeakerChangeDetector:
"""Modified speaker change detector that supports a configurable number of speakers"""
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
self.embedding_dim = embedding_dim
self.change_threshold = change_threshold
self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS) # Ensure we don't exceed absolute max
self.current_speaker = 0 # Initial speaker (0 to max_speakers-1)
self.previous_embeddings = []
self.last_change_time = time.time()
self.mean_embeddings = [None] * self.max_speakers # Mean embeddings for each speaker
self.speaker_embeddings = [[] for _ in range(self.max_speakers)] # All embeddings for each speaker
self.last_similarity = 0.0
self.active_speakers = set([0]) # Track which speakers have been detected
def set_max_speakers(self, max_speakers):
"""Update the maximum number of speakers"""
new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
# If reducing the number of speakers
if new_max < self.max_speakers:
# Remove any speakers beyond the new max
for speaker_id in list(self.active_speakers):
if speaker_id >= new_max:
self.active_speakers.discard(speaker_id)
# Ensure current speaker is valid
if self.current_speaker >= new_max:
self.current_speaker = 0
# Expand arrays if increasing max speakers
if new_max > self.max_speakers:
# Extend mean_embeddings array
self.mean_embeddings.extend([None] * (new_max - self.max_speakers))
# Extend speaker_embeddings array
self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
# Truncate arrays if decreasing max speakers
else:
self.mean_embeddings = self.mean_embeddings[:new_max]
self.speaker_embeddings = self.speaker_embeddings[:new_max]
self.max_speakers = new_max
def set_change_threshold(self, threshold):
"""Update the threshold for detecting speaker changes"""
self.change_threshold = max(0.1, min(threshold, 0.99))
def add_embedding(self, embedding, timestamp=None):
"""Add a new embedding and check if there's a speaker change"""
current_time = timestamp or time.time()
# Initialize first speaker if no embeddings yet
if not self.previous_embeddings:
self.previous_embeddings.append(embedding)
self.speaker_embeddings[self.current_speaker].append(embedding)
if self.mean_embeddings[self.current_speaker] is None:
self.mean_embeddings[self.current_speaker] = embedding.copy()
return self.current_speaker, 1.0
# Calculate similarity with current speaker's mean embedding
current_mean = self.mean_embeddings[self.current_speaker]
if current_mean is not None:
similarity = 1.0 - cosine(embedding, current_mean)
else:
# If no mean yet, compare with most recent embedding
similarity = 1.0 - cosine(embedding, self.previous_embeddings[-1])
self.last_similarity = similarity
# Decide if this is a speaker change
time_since_last_change = current_time - self.last_change_time
is_speaker_change = False
# Only consider change if minimum time has passed since last change
if time_since_last_change >= MIN_SEGMENT_DURATION:
# Check similarity against threshold
if similarity < self.change_threshold:
# Compare with all other speakers' means if available
best_speaker = self.current_speaker
best_similarity = similarity
# Check each active speaker
for speaker_id in range(self.max_speakers):
if speaker_id == self.current_speaker:
continue
speaker_mean = self.mean_embeddings[speaker_id]
if speaker_mean is not None:
# Calculate similarity with this speaker
speaker_similarity = 1.0 - cosine(embedding, speaker_mean)
# If more similar to this speaker, update best match
if speaker_similarity > best_similarity:
best_similarity = speaker_similarity
best_speaker = speaker_id
# If best match is different from current speaker, change speaker
if best_speaker != self.current_speaker:
is_speaker_change = True
self.current_speaker = best_speaker
# If no good match with existing speakers and we haven't used all speakers yet
elif len(self.active_speakers) < self.max_speakers:
# Find the next unused speaker ID
for new_id in range(self.max_speakers):
if new_id not in self.active_speakers:
is_speaker_change = True
self.current_speaker = new_id
self.active_speakers.add(new_id)
break
# Handle speaker change
if is_speaker_change:
self.last_change_time = current_time
# Update embeddings
self.previous_embeddings.append(embedding)
if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE:
self.previous_embeddings.pop(0)
# Update current speaker's embeddings and mean
self.speaker_embeddings[self.current_speaker].append(embedding)
self.active_speakers.add(self.current_speaker)
if len(self.speaker_embeddings[self.current_speaker]) > 30: # Limit history size
self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-30:]
# Update mean embedding for current speaker
if self.speaker_embeddings[self.current_speaker]:
self.mean_embeddings[self.current_speaker] = np.mean(
self.speaker_embeddings[self.current_speaker], axis=0
)
return self.current_speaker, similarity
def get_color_for_speaker(self, speaker_id):
"""Return color for speaker ID (0 to max_speakers-1)"""
if 0 <= speaker_id < len(SPEAKER_COLORS):
return SPEAKER_COLORS[speaker_id]
return "#FFFFFF" # Default to white if out of range
def get_status_info(self):
"""Return status information about the speaker change detector"""
speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)]
return {
"current_speaker": self.current_speaker,
"speaker_counts": speaker_counts,
"active_speakers": len(self.active_speakers),
"max_speakers": self.max_speakers,
"last_similarity": self.last_similarity,
"threshold": self.change_threshold
}
class TextUpdateThread(QThread):
text_update_signal = pyqtSignal(str)
def __init__(self, text):
super().__init__()
self.text = text
def run(self):
self.text_update_signal.emit(self.text)
class SentenceWorker(QThread):
sentence_update_signal = pyqtSignal(list, list)
status_signal = pyqtSignal(str)
def __init__(self, queue, encoder, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
super().__init__()
self.queue = queue
self.encoder = encoder
self._is_running = True
self.full_sentences = []
self.sentence_speakers = []
self.change_threshold = change_threshold
self.max_speakers = max_speakers
# Initialize audio processor for embedding extraction
self.audio_processor = AudioProcessor(self.encoder)
# Initialize speaker change detector
self.speaker_detector = SpeakerChangeDetector(
embedding_dim=self.encoder.embedding_dim,
change_threshold=self.change_threshold,
max_speakers=self.max_speakers
)
# Setup monitoring timer
self.monitoring_timer = QTimer()
self.monitoring_timer.timeout.connect(self.report_status)
self.monitoring_timer.start(2000) # Report every 2 seconds
def set_change_threshold(self, threshold):
"""Update change detection threshold"""
self.change_threshold = threshold
self.speaker_detector.set_change_threshold(threshold)
def set_max_speakers(self, max_speakers):
"""Update maximum number of speakers"""
self.max_speakers = max_speakers
self.speaker_detector.set_max_speakers(max_speakers)
def run(self):
"""Main worker thread loop"""
while self._is_running:
try:
text, bytes = self.queue.get(timeout=1)
self.process_item(text, bytes)
except queue.Empty:
continue
def report_status(self):
"""Report status information"""
# Get status information from speaker detector
status = self.speaker_detector.get_status_info()
# Prepare status message with information for all speakers
status_text = f"Current speaker: {status['current_speaker'] + 1}\n"
status_text += f"Active speakers: {status['active_speakers']} of {status['max_speakers']}\n"
# Show segment counts for each speaker
for i in range(status['max_speakers']):
if i < len(SPEAKER_COLOR_NAMES):
color_name = SPEAKER_COLOR_NAMES[i]
else:
color_name = f"Speaker {i+1}"
status_text += f"Speaker {i+1} ({color_name}) segments: {status['speaker_counts'][i]}\n"
status_text += f"Last similarity score: {status['last_similarity']:.3f}\n"
status_text += f"Change threshold: {status['threshold']:.2f}\n"
status_text += f"Total sentences: {len(self.full_sentences)}"
# Send to UI
self.status_signal.emit(status_text)
def process_item(self, text, bytes):
"""Process a new text-audio pair"""
# Convert audio data to int16
audio_int16 = np.int16(bytes * 32767)
# Extract speaker embedding
speaker_embedding = self.audio_processor.extract_embedding(audio_int16)
# Store sentence and embedding
self.full_sentences.append((text, speaker_embedding))
# Fill in any missing speaker assignments
if len(self.sentence_speakers) < len(self.full_sentences) - 1:
while len(self.sentence_speakers) < len(self.full_sentences) - 1:
self.sentence_speakers.append(0) # Default to first speaker
# Detect speaker changes
speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding)
self.sentence_speakers.append(speaker_id)
# Send updated data to UI
self.sentence_update_signal.emit(self.full_sentences, self.sentence_speakers)
def stop(self):
"""Stop the worker thread"""
self._is_running = False
if self.monitoring_timer.isActive():
self.monitoring_timer.stop()
class RecordingThread(QThread):
def __init__(self, recorder):
super().__init__()
self.recorder = recorder
self._is_running = True
# Determine input source
if USE_MICROPHONE:
self.device_id = str(sc.default_microphone().name)
self.include_loopback = False
else:
self.device_id = str(sc.default_speaker().name)
self.include_loopback = True
def updateDevice(self, device_id, include_loopback):
self.device_id = device_id
self.include_loopback = include_loopback
def run(self):
while self._is_running:
try:
with sc.get_microphone(id=self.device_id, include_loopback=self.include_loopback).recorder(
samplerate=SAMPLE_RATE, blocksize=BUFFER_SIZE
) as mic:
# Process audio chunks while device hasn't changed
current_device = self.device_id
current_loopback = self.include_loopback
while self._is_running and current_device == self.device_id and current_loopback == self.include_loopback:
# Record audio chunk
audio_data = mic.record(numframes=BUFFER_SIZE)
# Convert stereo to mono if needed
if audio_data.shape[1] > 1 and CHANNELS == 1:
audio_data = audio_data[:, 0]
# Convert to int16
audio_int16 = (audio_data.flatten() * 32767).astype(np.int16)
# Feed to recorder
audio_bytes = audio_int16.tobytes()
self.recorder.feed_audio(audio_bytes)
except Exception as e:
print(f"Recording error: {e}")
# Wait before retry on error
time.sleep(1)
def stop(self):
self._is_running = False
class TextRetrievalThread(QThread):
textRetrievedFinal = pyqtSignal(str, np.ndarray)
textRetrievedLive = pyqtSignal(str)
recorderStarted = pyqtSignal()
def __init__(self):
super().__init__()
def live_text_detected(self, text):
self.textRetrievedLive.emit(text)
def run(self):
recorder_config = {
'spinner': False,
'use_microphone': False,
'model': FINAL_TRANSCRIPTION_MODEL,
'language': TRANSCRIPTION_LANGUAGE,
'silero_sensitivity': SILERO_SENSITIVITY,
'webrtc_sensitivity': WEBRTC_SENSITIVITY,
'post_speech_silence_duration': SILENCE_THRESHS[1],
'min_length_of_recording': MIN_LENGTH_OF_RECORDING,
'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
'min_gap_between_recordings': 0,
'enable_realtime_transcription': True,
'realtime_processing_pause': 0,
'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
'on_realtime_transcription_update': self.live_text_detected,
'beam_size': FINAL_BEAM_SIZE,
'beam_size_realtime': REALTIME_BEAM_SIZE,
'buffer_size': BUFFER_SIZE,
'sample_rate': SAMPLE_RATE,
}
self.recorder = AudioToTextRecorder(**recorder_config)
self.recorderStarted.emit()
def process_text(text):
bytes = self.recorder.last_transcription_bytes
self.textRetrievedFinal.emit(text, bytes)
while True:
self.recorder.text(process_text)
class MainWindow(QMainWindow):
def __init__(self):
super().__init__()
self.setWindowTitle("Real-time Speaker Change Detection")
self.encoder = None
self.initialized = False
self.displayed_text = ""
self.last_realtime_text = ""
self.full_sentences = []
self.sentence_speakers = []
self.pending_sentences = []
self.queue = queue.Queue()
self.recording_thread = None
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
self.max_speakers = DEFAULT_MAX_SPEAKERS
# Create main horizontal layout
self.mainLayout = QHBoxLayout()
# Add text edit area to main layout
self.text_edit = QTextEdit(self)
self.mainLayout.addWidget(self.text_edit, 1)
# Create right layout for controls
self.rightLayout = QVBoxLayout()
self.rightLayout.setAlignment(Qt.AlignmentFlag.AlignTop)
# Create all controls
self.create_controls()
# Create container for right layout
self.rightContainer = QWidget()
self.rightContainer.setLayout(self.rightLayout)
self.mainLayout.addWidget(self.rightContainer, 0)
# Set main layout as central widget
self.centralWidget = QWidget()
self.centralWidget.setLayout(self.mainLayout)
self.setCentralWidget(self.centralWidget)
self.setStyleSheet("""
QGroupBox {
border: 1px solid #555;
border-radius: 3px;
margin-top: 10px;
padding-top: 10px;
color: #ddd;
}
QGroupBox::title {
subcontrol-origin: margin;
subcontrol-position: top center;
padding: 0 5px;
}
QLabel {
color: #ddd;
}
QPushButton {
background: #444;
color: #ddd;
border: 1px solid #555;
padding: 5px;
margin-bottom: 10px;
}
QPushButton:hover {
background: #555;
}
QTextEdit {
background-color: #1e1e1e;
color: #ffffff;
font-family: 'Arial';
font-size: 16pt;
}
QSlider {
height: 30px;
}
QSlider::groove:horizontal {
height: 8px;
background: #333;
margin: 2px 0;
}
QSlider::handle:horizontal {
background: #666;
border: 1px solid #777;
width: 18px;
margin: -8px 0;
border-radius: 9px;
}
""")
def create_controls(self):
# Speaker change threshold control
self.threshold_group = QGroupBox("Speaker Change Sensitivity")
threshold_layout = QVBoxLayout()
self.threshold_label = QLabel(f"Change threshold: {self.change_threshold:.2f}")
threshold_layout.addWidget(self.threshold_label)
self.threshold_slider = QSlider(Qt.Orientation.Horizontal)
self.threshold_slider.setMinimum(10)
self.threshold_slider.setMaximum(95)
self.threshold_slider.setValue(int(self.change_threshold * 100))
self.threshold_slider.valueChanged.connect(self.update_threshold)
threshold_layout.addWidget(self.threshold_slider)
self.threshold_explanation = QLabel(
"If the speakers have similar voices, it would be better to set it above 0.5, and if they have different voices, it would be lower."
)
self.threshold_explanation.setWordWrap(True)
threshold_layout.addWidget(self.threshold_explanation)
self.threshold_group.setLayout(threshold_layout)
self.rightLayout.addWidget(self.threshold_group)
# Max speakers control
self.max_speakers_group = QGroupBox("Maximum Number of Speakers")
max_speakers_layout = QVBoxLayout()
self.max_speakers_label = QLabel(f"Max speakers: {self.max_speakers}")
max_speakers_layout.addWidget(self.max_speakers_label)
self.max_speakers_spinbox = QSpinBox()
self.max_speakers_spinbox.setMinimum(2)
self.max_speakers_spinbox.setMaximum(ABSOLUTE_MAX_SPEAKERS)
self.max_speakers_spinbox.setValue(self.max_speakers)
self.max_speakers_spinbox.valueChanged.connect(self.update_max_speakers)
max_speakers_layout.addWidget(self.max_speakers_spinbox)
self.max_speakers_explanation = QLabel(
f"You can set between 2 and {ABSOLUTE_MAX_SPEAKERS} speakers.\n"
"Changes will apply immediately."
)
self.max_speakers_explanation.setWordWrap(True)
max_speakers_layout.addWidget(self.max_speakers_explanation)
self.max_speakers_group.setLayout(max_speakers_layout)
self.rightLayout.addWidget(self.max_speakers_group)
# Speaker color legend - dynamic based on max speakers
self.legend_group = QGroupBox("Speaker Colors")
self.legend_layout = QVBoxLayout()
# Create speaker labels dynamically
self.speaker_labels = []
for i in range(ABSOLUTE_MAX_SPEAKERS):
color = SPEAKER_COLORS[i]
color_name = SPEAKER_COLOR_NAMES[i]
label = QLabel(f"Speaker {i+1} ({color_name}): <span style='color:{color};'>■■■■■</span>")
self.speaker_labels.append(label)
if i < self.max_speakers:
self.legend_layout.addWidget(label)
self.legend_group.setLayout(self.legend_layout)
self.rightLayout.addWidget(self.legend_group)
# Status display area
self.status_group = QGroupBox("Status")
status_layout = QVBoxLayout()
self.status_label = QLabel("Status information will be displayed here.")
self.status_label.setWordWrap(True)
status_layout.addWidget(self.status_label)
self.status_group.setLayout(status_layout)
self.rightLayout.addWidget(self.status_group)
# Clear button
self.clear_button = QPushButton("Clear Conversation")
self.clear_button.clicked.connect(self.clear_state)
self.clear_button.setEnabled(False)
self.rightLayout.addWidget(self.clear_button)
def update_threshold(self, value):
"""Update speaker change detection threshold"""
threshold = value / 100.0
self.change_threshold = threshold
self.threshold_label.setText(f"Change threshold: {threshold:.2f}")
# Update in worker if it exists
if hasattr(self, 'worker_thread'):
self.worker_thread.set_change_threshold(threshold)
def update_max_speakers(self, value):
"""Update maximum number of speakers"""
self.max_speakers = value
self.max_speakers_label.setText(f"Max speakers: {value}")
# Update visible speaker labels
self.update_speaker_labels()
# Update in worker if it exists
if hasattr(self, 'worker_thread'):
self.worker_thread.set_max_speakers(value)
def update_speaker_labels(self):
"""Update which speaker labels are visible based on max_speakers"""
# Clear all labels first
for i in range(len(self.speaker_labels)):
label = self.speaker_labels[i]
if label.parent():
self.legend_layout.removeWidget(label)
label.setParent(None)
# Add only the labels for the current max_speakers
for i in range(min(self.max_speakers, len(self.speaker_labels))):
self.legend_layout.addWidget(self.speaker_labels[i])
def clear_state(self):
# Clear text edit area
self.text_edit.clear()
# Reset state variables
self.displayed_text = ""
self.last_realtime_text = ""
self.full_sentences = []
self.sentence_speakers = []
self.pending_sentences = []
if hasattr(self, 'worker_thread'):
self.worker_thread.full_sentences = []
self.worker_thread.sentence_speakers = []
# Reset speaker detector with current threshold and max_speakers
self.worker_thread.speaker_detector = SpeakerChangeDetector(
embedding_dim=self.encoder.embedding_dim,
change_threshold=self.change_threshold,
max_speakers=self.max_speakers
)
# Display message
self.text_edit.setHtml("<i>All content cleared. Waiting for new input...</i>")
def update_status(self, status_text):
self.status_label.setText(status_text)
def showEvent(self, event):
super().showEvent(event)
if event.type() == QEvent.Type.Show:
if not self.initialized:
self.initialized = True
self.resize(1200, 800)
self.update_text("<i>Initializing application...</i>")
QTimer.singleShot(500, self.init)
def process_live_text(self, text):
text = text.strip()
if text:
sentence_delimiters = '.?!。'
prob_sentence_end = (
len(self.last_realtime_text) > 0
and text[-1] in sentence_delimiters
and self.last_realtime_text[-1] in sentence_delimiters
)
self.last_realtime_text = text
if prob_sentence_end:
if FAST_SENTENCE_END:
self.text_retrieval_thread.recorder.stop()
else:
self.text_retrieval_thread.recorder.post_speech_silence_duration = SILENCE_THRESHS[0]
else:
self.text_retrieval_thread.recorder.post_speech_silence_duration = SILENCE_THRESHS[1]
self.text_detected(text)
def text_detected(self, text):
try:
sentences_with_style = []
for i, sentence in enumerate(self.full_sentences):
sentence_text, _ = sentence
if i >= len(self.sentence_speakers):
color = "#FFFFFF" # Default white
else:
speaker_id = self.sentence_speakers[i]
color = self.worker_thread.speaker_detector.get_color_for_speaker(speaker_id)
sentences_with_style.append(
f'<span style="color:{color};">{sentence_text}</span>')
for pending_sentence in self.pending_sentences:
sentences_with_style.append(
f'<span style="color:#60FFFF;">{pending_sentence}</span>')
new_text = " ".join(sentences_with_style).strip() + " " + text if len(sentences_with_style) > 0 else text
if new_text != self.displayed_text:
self.displayed_text = new_text
self.update_text(new_text)
except Exception as e:
print(f"Error: {e}")
def process_final(self, text, bytes):
text = text.strip()
if text:
try:
self.pending_sentences.append(text)
self.queue.put((text, bytes))
except Exception as e:
print(f"Error: {e}")
def capture_output_and_feed_to_recorder(self):
# Use default device settings
device_id = str(sc.default_speaker().name)
include_loopback = True
self.recording_thread = RecordingThread(self.text_retrieval_thread.recorder)
# Update with current device settings
self.recording_thread.updateDevice(device_id, include_loopback)
self.recording_thread.start()
def recorder_ready(self):
self.update_text("<i>Recording ready</i>")
self.capture_output_and_feed_to_recorder()
def init(self):
self.update_text("<i>Loading ECAPA-TDNN model... Please wait.</i>")
# Start model loading in background thread
self.start_encoder()
def update_loading_status(self, message):
self.update_text(f"<i>{message}</i>")
def start_encoder(self):
# Create and start encoder loader thread
self.encoder_loader_thread = EncoderLoaderThread()
self.encoder_loader_thread.model_loaded.connect(self.on_model_loaded)
self.encoder_loader_thread.progress_update.connect(self.update_loading_status)
self.encoder_loader_thread.start()
def on_model_loaded(self, encoder):
# Store loaded encoder model
self.encoder = encoder
if self.encoder is None:
self.update_text("<i>Failed to load ECAPA-TDNN model. Please check your configuration.</i>")
return
# Enable all controls after model is loaded
self.clear_button.setEnabled(True)
self.threshold_slider.setEnabled(True)
# Continue initialization
self.update_text("<i>ECAPA-TDNN model loaded. Starting recorder...</i>")
self.text_retrieval_thread = TextRetrievalThread()
self.text_retrieval_thread.recorderStarted.connect(
self.recorder_ready)
self.text_retrieval_thread.textRetrievedLive.connect(
self.process_live_text)
self.text_retrieval_thread.textRetrievedFinal.connect(
self.process_final)
self.text_retrieval_thread.start()
self.worker_thread = SentenceWorker(
self.queue,
self.encoder,
change_threshold=self.change_threshold,
max_speakers=self.max_speakers
)
self.worker_thread.sentence_update_signal.connect(
self.sentence_updated)
self.worker_thread.status_signal.connect(
self.update_status)
self.worker_thread.start()
def sentence_updated(self, full_sentences, sentence_speakers):
self.pending_text = ""
self.full_sentences = full_sentences
self.sentence_speakers = sentence_speakers
for sentence in self.full_sentences:
sentence_text, _ = sentence
if sentence_text in self.pending_sentences:
self.pending_sentences.remove(sentence_text)
self.text_detected("")
def set_text(self, text):
self.update_thread = TextUpdateThread(text)
self.update_thread.text_update_signal.connect(self.update_text)
self.update_thread.start()
def update_text(self, text):
self.text_edit.setHtml(text)
self.text_edit.verticalScrollBar().setValue(
self.text_edit.verticalScrollBar().maximum())
def main():
app = QApplication(sys.argv)
dark_stylesheet = """
QMainWindow {
background-color: #323232;
}
QTextEdit {
background-color: #1e1e1e;
color: #ffffff;
}
"""
app.setStyleSheet(dark_stylesheet)
main_window = MainWindow()
main_window.show()
sys.exit(app.exec())
if __name__ == "__main__":
main()