File size: 37,363 Bytes
b37c0fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
from PyQt6.QtWidgets import (QApplication, QTextEdit, QMainWindow, QLabel, QVBoxLayout, QWidget, 
                            QHBoxLayout, QPushButton, QSizePolicy, QGroupBox, QSlider, QSpinBox)
from PyQt6.QtCore import Qt, pyqtSignal, QThread, QEvent, QTimer
from scipy.spatial.distance import cosine
from RealtimeSTT import AudioToTextRecorder
import numpy as np
import soundcard as sc
import queue
import torch
import time
import sys
import os
import urllib.request
import torchaudio

# Simplified configuration parameters
SILENCE_THRESHS = [0, 0.4]
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
FINAL_BEAM_SIZE = 5
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
REALTIME_BEAM_SIZE = 5
TRANSCRIPTION_LANGUAGE = "en" # Accuracy in languages ​​other than English is very low.
SILERO_SENSITIVITY = 0.4
WEBRTC_SENSITIVITY = 3
MIN_LENGTH_OF_RECORDING = 0.7
PRE_RECORDING_BUFFER_DURATION = 0.35

# Speaker change detection parameters
DEFAULT_CHANGE_THRESHOLD = 0.7  # Threshold for detecting speaker change
EMBEDDING_HISTORY_SIZE = 5  # Number of embeddings to keep for comparison
MIN_SEGMENT_DURATION = 1.0  # Minimum duration before considering a speaker change
DEFAULT_MAX_SPEAKERS = 4  # Default maximum number of speakers
ABSOLUTE_MAX_SPEAKERS = 10  # Absolute maximum number of speakers allowed

# Global variables
FAST_SENTENCE_END = True
USE_MICROPHONE = False
SAMPLE_RATE = 16000
BUFFER_SIZE = 512
CHANNELS = 1

# Speaker colors - now we have colors for up to 10 speakers
SPEAKER_COLORS = [
    "#FFFF00",  # Yellow
    "#FF0000",  # Red
    "#00FF00",  # Green
    "#00FFFF",  # Cyan
    "#FF00FF",  # Magenta
    "#0000FF",  # Blue
    "#FF8000",  # Orange
    "#00FF80",  # Spring Green
    "#8000FF",  # Purple
    "#FFFFFF",  # White
]

# Color names for display
SPEAKER_COLOR_NAMES = [
    "Yellow",
    "Red",
    "Green",
    "Cyan",
    "Magenta",
    "Blue",
    "Orange",
    "Spring Green",
    "Purple",
    "White"
]


class SpeechBrainEncoder:
    """ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
    def __init__(self, device="cpu"):
        self.device = device
        self.model = None
        self.embedding_dim = 192  # ECAPA-TDNN default dimension
        self.model_loaded = False
        self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
        os.makedirs(self.cache_dir, exist_ok=True)
    
    def _download_model(self):
        """Download pre-trained SpeechBrain ECAPA-TDNN model if not present"""
        model_url = "https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb/resolve/main/embedding_model.ckpt"
        model_path = os.path.join(self.cache_dir, "embedding_model.ckpt")
        
        if not os.path.exists(model_path):
            print(f"Downloading ECAPA-TDNN model to {model_path}...")
            urllib.request.urlretrieve(model_url, model_path)
        
        return model_path
    
    def load_model(self):
        """Load the ECAPA-TDNN model"""
        try:
            # Import SpeechBrain
            from speechbrain.pretrained import EncoderClassifier
            
            # Get model path
            model_path = self._download_model()
            
            # Load the pre-trained model
            self.model = EncoderClassifier.from_hparams(
                source="speechbrain/spkrec-ecapa-voxceleb",
                savedir=self.cache_dir,
                run_opts={"device": self.device}
            )
            
            self.model_loaded = True
            return True
        except Exception as e:
            print(f"Error loading ECAPA-TDNN model: {e}")
            return False
    
    def embed_utterance(self, audio, sr=16000):
        """Extract speaker embedding from audio"""
        if not self.model_loaded:
            raise ValueError("Model not loaded. Call load_model() first.")
        
        try:
            # Convert numpy array to torch tensor
            if isinstance(audio, np.ndarray):
                waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0)
            else:
                waveform = audio.unsqueeze(0)
            
            # Ensure sample rate matches model expected rate
            if sr != 16000:
                waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
            
            # Get embedding
            with torch.no_grad():
                embedding = self.model.encode_batch(waveform)
                
            return embedding.squeeze().cpu().numpy()
        except Exception as e:
            print(f"Error extracting embedding: {e}")
            return np.zeros(self.embedding_dim)


class AudioProcessor:
    """Processes audio data to extract speaker embeddings"""
    def __init__(self, encoder):
        self.encoder = encoder
    
    def extract_embedding(self, audio_int16):
        try:
            # Convert int16 audio data to float32
            float_audio = audio_int16.astype(np.float32) / 32768.0
            
            # Normalize if needed
            if np.abs(float_audio).max() > 1.0:
                float_audio = float_audio / np.abs(float_audio).max()
            
            # Extract embedding using the loaded encoder
            embedding = self.encoder.embed_utterance(float_audio)
            
            return embedding
        except Exception as e:
            print(f"Embedding extraction error: {e}")
            return np.zeros(self.encoder.embedding_dim)


class EncoderLoaderThread(QThread):
    """Thread for loading the speaker encoder model"""
    model_loaded = pyqtSignal(object)
    progress_update = pyqtSignal(str)
    
    def run(self):
        try:
            self.progress_update.emit("Initializing speaker encoder model...")
            
            # Check device
            device_str = "cuda" if torch.cuda.is_available() else "cpu"
            self.progress_update.emit(f"Using device: {device_str}")
            
            # Create SpeechBrain encoder
            self.progress_update.emit("Loading ECAPA-TDNN model...")
            encoder = SpeechBrainEncoder(device=device_str)
            
            # Load the model
            success = encoder.load_model()
            
            if success:
                self.progress_update.emit("ECAPA-TDNN model loading complete!")
                self.model_loaded.emit(encoder)
            else:
                self.progress_update.emit("Failed to load ECAPA-TDNN model. Using fallback...")
                self.model_loaded.emit(None)
        except Exception as e:
            self.progress_update.emit(f"Model loading error: {e}")
            self.model_loaded.emit(None)


class SpeakerChangeDetector:
    """Modified speaker change detector that supports a configurable number of speakers"""
    def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
        self.embedding_dim = embedding_dim
        self.change_threshold = change_threshold
        self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)  # Ensure we don't exceed absolute max
        self.current_speaker = 0  # Initial speaker (0 to max_speakers-1)
        self.previous_embeddings = []
        self.last_change_time = time.time()
        self.mean_embeddings = [None] * self.max_speakers  # Mean embeddings for each speaker
        self.speaker_embeddings = [[] for _ in range(self.max_speakers)]  # All embeddings for each speaker
        self.last_similarity = 0.0
        self.active_speakers = set([0])  # Track which speakers have been detected
        
    def set_max_speakers(self, max_speakers):
        """Update the maximum number of speakers"""
        new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
        
        # If reducing the number of speakers
        if new_max < self.max_speakers:
            # Remove any speakers beyond the new max
            for speaker_id in list(self.active_speakers):
                if speaker_id >= new_max:
                    self.active_speakers.discard(speaker_id)
            
            # Ensure current speaker is valid
            if self.current_speaker >= new_max:
                self.current_speaker = 0
        
        # Expand arrays if increasing max speakers
        if new_max > self.max_speakers:
            # Extend mean_embeddings array
            self.mean_embeddings.extend([None] * (new_max - self.max_speakers))
            
            # Extend speaker_embeddings array
            self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
        
        # Truncate arrays if decreasing max speakers
        else:
            self.mean_embeddings = self.mean_embeddings[:new_max]
            self.speaker_embeddings = self.speaker_embeddings[:new_max]
        
        self.max_speakers = new_max
        
    def set_change_threshold(self, threshold):
        """Update the threshold for detecting speaker changes"""
        self.change_threshold = max(0.1, min(threshold, 0.99))
        
    def add_embedding(self, embedding, timestamp=None):
        """Add a new embedding and check if there's a speaker change"""
        current_time = timestamp or time.time()
        
        # Initialize first speaker if no embeddings yet
        if not self.previous_embeddings:
            self.previous_embeddings.append(embedding)
            self.speaker_embeddings[self.current_speaker].append(embedding)
            if self.mean_embeddings[self.current_speaker] is None:
                self.mean_embeddings[self.current_speaker] = embedding.copy()
            return self.current_speaker, 1.0
        
        # Calculate similarity with current speaker's mean embedding
        current_mean = self.mean_embeddings[self.current_speaker]
        if current_mean is not None:
            similarity = 1.0 - cosine(embedding, current_mean)
        else:
            # If no mean yet, compare with most recent embedding
            similarity = 1.0 - cosine(embedding, self.previous_embeddings[-1])
        
        self.last_similarity = similarity
        
        # Decide if this is a speaker change
        time_since_last_change = current_time - self.last_change_time
        is_speaker_change = False
        
        # Only consider change if minimum time has passed since last change
        if time_since_last_change >= MIN_SEGMENT_DURATION:
            # Check similarity against threshold
            if similarity < self.change_threshold:
                # Compare with all other speakers' means if available
                best_speaker = self.current_speaker
                best_similarity = similarity
                
                # Check each active speaker
                for speaker_id in range(self.max_speakers):
                    if speaker_id == self.current_speaker:
                        continue
                        
                    speaker_mean = self.mean_embeddings[speaker_id]
                    
                    if speaker_mean is not None:
                        # Calculate similarity with this speaker
                        speaker_similarity = 1.0 - cosine(embedding, speaker_mean)
                        
                        # If more similar to this speaker, update best match
                        if speaker_similarity > best_similarity:
                            best_similarity = speaker_similarity
                            best_speaker = speaker_id
                
                # If best match is different from current speaker, change speaker
                if best_speaker != self.current_speaker:
                    is_speaker_change = True
                    self.current_speaker = best_speaker
                # If no good match with existing speakers and we haven't used all speakers yet
                elif len(self.active_speakers) < self.max_speakers:
                    # Find the next unused speaker ID
                    for new_id in range(self.max_speakers):
                        if new_id not in self.active_speakers:
                            is_speaker_change = True
                            self.current_speaker = new_id
                            self.active_speakers.add(new_id)
                            break
        
        # Handle speaker change
        if is_speaker_change:
            self.last_change_time = current_time
        
        # Update embeddings
        self.previous_embeddings.append(embedding)
        if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE:
            self.previous_embeddings.pop(0)
        
        # Update current speaker's embeddings and mean
        self.speaker_embeddings[self.current_speaker].append(embedding)
        self.active_speakers.add(self.current_speaker)
        
        if len(self.speaker_embeddings[self.current_speaker]) > 30:  # Limit history size
            self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-30:]
            
        # Update mean embedding for current speaker
        if self.speaker_embeddings[self.current_speaker]:
            self.mean_embeddings[self.current_speaker] = np.mean(
                self.speaker_embeddings[self.current_speaker], axis=0
            )
        
        return self.current_speaker, similarity
    
    def get_color_for_speaker(self, speaker_id):
        """Return color for speaker ID (0 to max_speakers-1)"""
        if 0 <= speaker_id < len(SPEAKER_COLORS):
            return SPEAKER_COLORS[speaker_id]
        return "#FFFFFF"  # Default to white if out of range
    
    def get_status_info(self):
        """Return status information about the speaker change detector"""
        speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)]
        
        return {
            "current_speaker": self.current_speaker,
            "speaker_counts": speaker_counts,
            "active_speakers": len(self.active_speakers),
            "max_speakers": self.max_speakers,
            "last_similarity": self.last_similarity,
            "threshold": self.change_threshold
        }


class TextUpdateThread(QThread):
    text_update_signal = pyqtSignal(str)

    def __init__(self, text):
        super().__init__()
        self.text = text

    def run(self):
        self.text_update_signal.emit(self.text)


class SentenceWorker(QThread):
    sentence_update_signal = pyqtSignal(list, list)
    status_signal = pyqtSignal(str)

    def __init__(self, queue, encoder, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
        super().__init__()
        self.queue = queue
        self.encoder = encoder
        self._is_running = True
        self.full_sentences = []
        self.sentence_speakers = []
        self.change_threshold = change_threshold
        self.max_speakers = max_speakers
        
        # Initialize audio processor for embedding extraction
        self.audio_processor = AudioProcessor(self.encoder)
        
        # Initialize speaker change detector
        self.speaker_detector = SpeakerChangeDetector(
            embedding_dim=self.encoder.embedding_dim,
            change_threshold=self.change_threshold,
            max_speakers=self.max_speakers
        )
        
        # Setup monitoring timer
        self.monitoring_timer = QTimer()
        self.monitoring_timer.timeout.connect(self.report_status)
        self.monitoring_timer.start(2000)  # Report every 2 seconds
    
    def set_change_threshold(self, threshold):
        """Update change detection threshold"""
        self.change_threshold = threshold
        self.speaker_detector.set_change_threshold(threshold)
        
    def set_max_speakers(self, max_speakers):
        """Update maximum number of speakers"""
        self.max_speakers = max_speakers
        self.speaker_detector.set_max_speakers(max_speakers)
    
    def run(self):
        """Main worker thread loop"""
        while self._is_running:
            try:
                text, bytes = self.queue.get(timeout=1)
                self.process_item(text, bytes)
            except queue.Empty:
                continue
    
    def report_status(self):
        """Report status information"""
        # Get status information from speaker detector
        status = self.speaker_detector.get_status_info()
        
        # Prepare status message with information for all speakers
        status_text = f"Current speaker: {status['current_speaker'] + 1}\n"
        status_text += f"Active speakers: {status['active_speakers']} of {status['max_speakers']}\n"
        
        # Show segment counts for each speaker
        for i in range(status['max_speakers']):
            if i < len(SPEAKER_COLOR_NAMES):
                color_name = SPEAKER_COLOR_NAMES[i]
            else:
                color_name = f"Speaker {i+1}"
            status_text += f"Speaker {i+1} ({color_name}) segments: {status['speaker_counts'][i]}\n"
        
        status_text += f"Last similarity score: {status['last_similarity']:.3f}\n"
        status_text += f"Change threshold: {status['threshold']:.2f}\n"
        status_text += f"Total sentences: {len(self.full_sentences)}"
        
        # Send to UI
        self.status_signal.emit(status_text)
    
    def process_item(self, text, bytes):
        """Process a new text-audio pair"""
        # Convert audio data to int16
        audio_int16 = np.int16(bytes * 32767)
        
        # Extract speaker embedding
        speaker_embedding = self.audio_processor.extract_embedding(audio_int16)
        
        # Store sentence and embedding
        self.full_sentences.append((text, speaker_embedding))
        
        # Fill in any missing speaker assignments
        if len(self.sentence_speakers) < len(self.full_sentences) - 1:
            while len(self.sentence_speakers) < len(self.full_sentences) - 1:
                self.sentence_speakers.append(0)  # Default to first speaker
        
        # Detect speaker changes
        speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding)
        self.sentence_speakers.append(speaker_id)
        
        # Send updated data to UI
        self.sentence_update_signal.emit(self.full_sentences, self.sentence_speakers)
    
    def stop(self):
        """Stop the worker thread"""
        self._is_running = False
        if self.monitoring_timer.isActive():
            self.monitoring_timer.stop()


class RecordingThread(QThread):
    def __init__(self, recorder):
        super().__init__()
        self.recorder = recorder
        self._is_running = True
        
        # Determine input source
        if USE_MICROPHONE:
            self.device_id = str(sc.default_microphone().name)
            self.include_loopback = False
        else:
            self.device_id = str(sc.default_speaker().name)
            self.include_loopback = True

    def updateDevice(self, device_id, include_loopback):
        self.device_id = device_id
        self.include_loopback = include_loopback

    def run(self):
        while self._is_running:
            try:
                with sc.get_microphone(id=self.device_id, include_loopback=self.include_loopback).recorder(
                    samplerate=SAMPLE_RATE, blocksize=BUFFER_SIZE
                ) as mic:
                    # Process audio chunks while device hasn't changed
                    current_device = self.device_id
                    current_loopback = self.include_loopback
                    
                    while self._is_running and current_device == self.device_id and current_loopback == self.include_loopback:
                        # Record audio chunk
                        audio_data = mic.record(numframes=BUFFER_SIZE)
                        
                        # Convert stereo to mono if needed
                        if audio_data.shape[1] > 1 and CHANNELS == 1:
                            audio_data = audio_data[:, 0]
                        
                        # Convert to int16
                        audio_int16 = (audio_data.flatten() * 32767).astype(np.int16)
                        
                        # Feed to recorder
                        audio_bytes = audio_int16.tobytes()
                        self.recorder.feed_audio(audio_bytes)
                    
            except Exception as e:
                print(f"Recording error: {e}")
                # Wait before retry on error
                time.sleep(1)

    def stop(self):
        self._is_running = False


class TextRetrievalThread(QThread):
    textRetrievedFinal = pyqtSignal(str, np.ndarray)
    textRetrievedLive = pyqtSignal(str)
    recorderStarted = pyqtSignal()

    def __init__(self):
        super().__init__()

    def live_text_detected(self, text):
        self.textRetrievedLive.emit(text)

    def run(self):
        recorder_config = {
            'spinner': False,
            'use_microphone': False,
            'model': FINAL_TRANSCRIPTION_MODEL,
            'language': TRANSCRIPTION_LANGUAGE,
            'silero_sensitivity': SILERO_SENSITIVITY,
            'webrtc_sensitivity': WEBRTC_SENSITIVITY,
            'post_speech_silence_duration': SILENCE_THRESHS[1],
            'min_length_of_recording': MIN_LENGTH_OF_RECORDING,
            'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
            'min_gap_between_recordings': 0,
            'enable_realtime_transcription': True,
            'realtime_processing_pause': 0,
            'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
            'on_realtime_transcription_update': self.live_text_detected,
            'beam_size': FINAL_BEAM_SIZE,
            'beam_size_realtime': REALTIME_BEAM_SIZE,
            'buffer_size': BUFFER_SIZE,
            'sample_rate': SAMPLE_RATE,
        }

        self.recorder = AudioToTextRecorder(**recorder_config)
        self.recorderStarted.emit()

        def process_text(text):
            bytes = self.recorder.last_transcription_bytes
            self.textRetrievedFinal.emit(text, bytes)

        while True:
            self.recorder.text(process_text)


class MainWindow(QMainWindow):
    def __init__(self):
        super().__init__()

        self.setWindowTitle("Real-time Speaker Change Detection")

        self.encoder = None
        self.initialized = False
        self.displayed_text = ""
        self.last_realtime_text = ""
        self.full_sentences = []
        self.sentence_speakers = []
        self.pending_sentences = []
        self.queue = queue.Queue()
        self.recording_thread = None
        self.change_threshold = DEFAULT_CHANGE_THRESHOLD
        self.max_speakers = DEFAULT_MAX_SPEAKERS

        # Create main horizontal layout
        self.mainLayout = QHBoxLayout()

        # Add text edit area to main layout
        self.text_edit = QTextEdit(self)
        self.mainLayout.addWidget(self.text_edit, 1)

        # Create right layout for controls
        self.rightLayout = QVBoxLayout()
        self.rightLayout.setAlignment(Qt.AlignmentFlag.AlignTop)
        
        # Create all controls
        self.create_controls()

        # Create container for right layout
        self.rightContainer = QWidget()
        self.rightContainer.setLayout(self.rightLayout)
        self.mainLayout.addWidget(self.rightContainer, 0)

        # Set main layout as central widget
        self.centralWidget = QWidget()
        self.centralWidget.setLayout(self.mainLayout)
        self.setCentralWidget(self.centralWidget)

        self.setStyleSheet("""
            QGroupBox {
                border: 1px solid #555;
                border-radius: 3px;
                margin-top: 10px;
                padding-top: 10px;
                color: #ddd;
            }
            QGroupBox::title {
                subcontrol-origin: margin;
                subcontrol-position: top center;
                padding: 0 5px;
            }
            QLabel {
                color: #ddd;
            }
            QPushButton {
                background: #444;
                color: #ddd;
                border: 1px solid #555;
                padding: 5px;
                margin-bottom: 10px;
            }
            QPushButton:hover {
                background: #555;
            }
            QTextEdit {
                background-color: #1e1e1e;
                color: #ffffff;
                font-family: 'Arial';
                font-size: 16pt;
            }
            QSlider {
                height: 30px;
            }
            QSlider::groove:horizontal {
                height: 8px;
                background: #333;
                margin: 2px 0;
            }
            QSlider::handle:horizontal {
                background: #666;
                border: 1px solid #777;
                width: 18px;
                margin: -8px 0;
                border-radius: 9px;
            }
        """)

    def create_controls(self):
        # Speaker change threshold control
        self.threshold_group = QGroupBox("Speaker Change Sensitivity")
        threshold_layout = QVBoxLayout()
        
        self.threshold_label = QLabel(f"Change threshold: {self.change_threshold:.2f}")
        threshold_layout.addWidget(self.threshold_label)
        
        self.threshold_slider = QSlider(Qt.Orientation.Horizontal)
        self.threshold_slider.setMinimum(10)
        self.threshold_slider.setMaximum(95)
        self.threshold_slider.setValue(int(self.change_threshold * 100))
        self.threshold_slider.valueChanged.connect(self.update_threshold)
        threshold_layout.addWidget(self.threshold_slider)
        
        self.threshold_explanation = QLabel(
            "If the speakers have similar voices, it would be better to set it above 0.5, and if they have different voices, it would be lower."
        )
        self.threshold_explanation.setWordWrap(True)
        threshold_layout.addWidget(self.threshold_explanation)
        
        self.threshold_group.setLayout(threshold_layout)
        self.rightLayout.addWidget(self.threshold_group)
        
        # Max speakers control
        self.max_speakers_group = QGroupBox("Maximum Number of Speakers")
        max_speakers_layout = QVBoxLayout()
        
        self.max_speakers_label = QLabel(f"Max speakers: {self.max_speakers}")
        max_speakers_layout.addWidget(self.max_speakers_label)
        
        self.max_speakers_spinbox = QSpinBox()
        self.max_speakers_spinbox.setMinimum(2)
        self.max_speakers_spinbox.setMaximum(ABSOLUTE_MAX_SPEAKERS)
        self.max_speakers_spinbox.setValue(self.max_speakers)
        self.max_speakers_spinbox.valueChanged.connect(self.update_max_speakers)
        max_speakers_layout.addWidget(self.max_speakers_spinbox)
        
        self.max_speakers_explanation = QLabel(
            f"You can set between 2 and {ABSOLUTE_MAX_SPEAKERS} speakers.\n"
            "Changes will apply immediately."
        )
        self.max_speakers_explanation.setWordWrap(True)
        max_speakers_layout.addWidget(self.max_speakers_explanation)
        
        self.max_speakers_group.setLayout(max_speakers_layout)
        self.rightLayout.addWidget(self.max_speakers_group)
        
        # Speaker color legend - dynamic based on max speakers
        self.legend_group = QGroupBox("Speaker Colors")
        self.legend_layout = QVBoxLayout()
        
        # Create speaker labels dynamically
        self.speaker_labels = []
        for i in range(ABSOLUTE_MAX_SPEAKERS):
            color = SPEAKER_COLORS[i]
            color_name = SPEAKER_COLOR_NAMES[i]
            label = QLabel(f"Speaker {i+1} ({color_name}): <span style='color:{color};'>■■■■■</span>")
            self.speaker_labels.append(label)
            if i < self.max_speakers:
                self.legend_layout.addWidget(label)
        
        self.legend_group.setLayout(self.legend_layout)
        self.rightLayout.addWidget(self.legend_group)
        
        # Status display area
        self.status_group = QGroupBox("Status")
        status_layout = QVBoxLayout()
        
        self.status_label = QLabel("Status information will be displayed here.")
        self.status_label.setWordWrap(True)
        status_layout.addWidget(self.status_label)
        
        self.status_group.setLayout(status_layout)
        self.rightLayout.addWidget(self.status_group)

        # Clear button
        self.clear_button = QPushButton("Clear Conversation")
        self.clear_button.clicked.connect(self.clear_state)
        self.clear_button.setEnabled(False)
        self.rightLayout.addWidget(self.clear_button)
    
    def update_threshold(self, value):
        """Update speaker change detection threshold"""
        threshold = value / 100.0
        self.change_threshold = threshold
        self.threshold_label.setText(f"Change threshold: {threshold:.2f}")
        
        # Update in worker if it exists
        if hasattr(self, 'worker_thread'):
            self.worker_thread.set_change_threshold(threshold)
            
    def update_max_speakers(self, value):
        """Update maximum number of speakers"""
        self.max_speakers = value
        self.max_speakers_label.setText(f"Max speakers: {value}")
        
        # Update visible speaker labels
        self.update_speaker_labels()
        
        # Update in worker if it exists
        if hasattr(self, 'worker_thread'):
            self.worker_thread.set_max_speakers(value)
    
    def update_speaker_labels(self):
        """Update which speaker labels are visible based on max_speakers"""
        # Clear all labels first
        for i in range(len(self.speaker_labels)):
            label = self.speaker_labels[i]
            if label.parent():
                self.legend_layout.removeWidget(label)
                label.setParent(None)
        
        # Add only the labels for the current max_speakers
        for i in range(min(self.max_speakers, len(self.speaker_labels))):
            self.legend_layout.addWidget(self.speaker_labels[i])

    def clear_state(self):
        # Clear text edit area
        self.text_edit.clear()

        # Reset state variables
        self.displayed_text = ""
        self.last_realtime_text = ""
        self.full_sentences = []
        self.sentence_speakers = []
        self.pending_sentences = []
        
        if hasattr(self, 'worker_thread'):
            self.worker_thread.full_sentences = []
            self.worker_thread.sentence_speakers = []
            # Reset speaker detector with current threshold and max_speakers
            self.worker_thread.speaker_detector = SpeakerChangeDetector(
                embedding_dim=self.encoder.embedding_dim,
                change_threshold=self.change_threshold,
                max_speakers=self.max_speakers
            )

        # Display message
        self.text_edit.setHtml("<i>All content cleared. Waiting for new input...</i>")
    
    def update_status(self, status_text):
        self.status_label.setText(status_text)

    def showEvent(self, event):
        super().showEvent(event)
        if event.type() == QEvent.Type.Show:
            if not self.initialized:
                self.initialized = True
                self.resize(1200, 800)
                self.update_text("<i>Initializing application...</i>")

                QTimer.singleShot(500, self.init)

    def process_live_text(self, text):
        text = text.strip()

        if text:
            sentence_delimiters = '.?!。'
            prob_sentence_end = (
                len(self.last_realtime_text) > 0
                and text[-1] in sentence_delimiters
                and self.last_realtime_text[-1] in sentence_delimiters
            )

            self.last_realtime_text = text

            if prob_sentence_end:
                if FAST_SENTENCE_END:
                    self.text_retrieval_thread.recorder.stop()
                else:
                    self.text_retrieval_thread.recorder.post_speech_silence_duration = SILENCE_THRESHS[0]
            else:
                self.text_retrieval_thread.recorder.post_speech_silence_duration = SILENCE_THRESHS[1]

        self.text_detected(text)

    def text_detected(self, text):
        try:
            sentences_with_style = []
            for i, sentence in enumerate(self.full_sentences):
                sentence_text, _ = sentence
                if i >= len(self.sentence_speakers):
                    color = "#FFFFFF"  # Default white
                else:
                    speaker_id = self.sentence_speakers[i]
                    color = self.worker_thread.speaker_detector.get_color_for_speaker(speaker_id)

                sentences_with_style.append(
                    f'<span style="color:{color};">{sentence_text}</span>')

            for pending_sentence in self.pending_sentences:
                sentences_with_style.append(
                    f'<span style="color:#60FFFF;">{pending_sentence}</span>')

            new_text = " ".join(sentences_with_style).strip() + " " + text if len(sentences_with_style) > 0 else text

            if new_text != self.displayed_text:
                self.displayed_text = new_text
                self.update_text(new_text)
        except Exception as e:
            print(f"Error: {e}")

    def process_final(self, text, bytes):
        text = text.strip()
        if text:
            try:
                self.pending_sentences.append(text)
                self.queue.put((text, bytes))
            except Exception as e:
                print(f"Error: {e}")

    def capture_output_and_feed_to_recorder(self):
        # Use default device settings
        device_id = str(sc.default_speaker().name)
        include_loopback = True
        
        self.recording_thread = RecordingThread(self.text_retrieval_thread.recorder)
        # Update with current device settings
        self.recording_thread.updateDevice(device_id, include_loopback)
        self.recording_thread.start()

    def recorder_ready(self):
        self.update_text("<i>Recording ready</i>")
        self.capture_output_and_feed_to_recorder()

    def init(self):
        self.update_text("<i>Loading ECAPA-TDNN model... Please wait.</i>")
        
        # Start model loading in background thread
        self.start_encoder()

    def update_loading_status(self, message):
        self.update_text(f"<i>{message}</i>")

    def start_encoder(self):
        # Create and start encoder loader thread
        self.encoder_loader_thread = EncoderLoaderThread()
        self.encoder_loader_thread.model_loaded.connect(self.on_model_loaded)
        self.encoder_loader_thread.progress_update.connect(self.update_loading_status)
        self.encoder_loader_thread.start()

    def on_model_loaded(self, encoder):
        # Store loaded encoder model
        self.encoder = encoder
        
        if self.encoder is None:
            self.update_text("<i>Failed to load ECAPA-TDNN model. Please check your configuration.</i>")
            return
        
        # Enable all controls after model is loaded
        self.clear_button.setEnabled(True)
        self.threshold_slider.setEnabled(True)
        
        # Continue initialization
        self.update_text("<i>ECAPA-TDNN model loaded. Starting recorder...</i>")
        
        self.text_retrieval_thread = TextRetrievalThread()
        self.text_retrieval_thread.recorderStarted.connect(
            self.recorder_ready)
        self.text_retrieval_thread.textRetrievedLive.connect(
            self.process_live_text)
        self.text_retrieval_thread.textRetrievedFinal.connect(
            self.process_final)
        self.text_retrieval_thread.start()
        
        self.worker_thread = SentenceWorker(
            self.queue, 
            self.encoder, 
            change_threshold=self.change_threshold,
            max_speakers=self.max_speakers
        )
        self.worker_thread.sentence_update_signal.connect(
            self.sentence_updated)
        self.worker_thread.status_signal.connect(
            self.update_status)
        self.worker_thread.start()

    def sentence_updated(self, full_sentences, sentence_speakers):
        self.pending_text = ""
        self.full_sentences = full_sentences
        self.sentence_speakers = sentence_speakers
        for sentence in self.full_sentences:
            sentence_text, _ = sentence
            if sentence_text in self.pending_sentences:
                self.pending_sentences.remove(sentence_text)
        self.text_detected("")

    def set_text(self, text):
        self.update_thread = TextUpdateThread(text)
        self.update_thread.text_update_signal.connect(self.update_text)
        self.update_thread.start()

    def update_text(self, text):
        self.text_edit.setHtml(text)
        self.text_edit.verticalScrollBar().setValue(
            self.text_edit.verticalScrollBar().maximum())


def main():
    app = QApplication(sys.argv)

    dark_stylesheet = """
    QMainWindow {
        background-color: #323232;
    }
    QTextEdit {
        background-color: #1e1e1e;
        color: #ffffff;
    }
    """
    app.setStyleSheet(dark_stylesheet)

    main_window = MainWindow()
    main_window.show()

    sys.exit(app.exec())


if __name__ == "__main__":
    main()