Saiyaswanth007's picture
Code fixing
78869ff
raw
history blame
34 kB
import gradio as gr
import numpy as np
import queue
import torch
import time
import threading
import os
import urllib.request
import torchaudio
from scipy.spatial.distance import cosine
from RealtimeSTT import AudioToTextRecorder
from fastapi import FastAPI
from fastrtc import Stream, AsyncStreamHandler, ReplyOnPause, get_cloudflare_turn_credentials_async, get_cloudflare_turn_credentials
import json
import io
import wave
import asyncio
import uvicorn
# Simplified configuration parameters
SILENCE_THRESHS = [0, 0.4]
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
FINAL_BEAM_SIZE = 5
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
REALTIME_BEAM_SIZE = 5
TRANSCRIPTION_LANGUAGE = "en"
SILERO_SENSITIVITY = 0.4
WEBRTC_SENSITIVITY = 3
MIN_LENGTH_OF_RECORDING = 0.7
PRE_RECORDING_BUFFER_DURATION = 0.35
# Speaker change detection parameters
DEFAULT_CHANGE_THRESHOLD = 0.7
EMBEDDING_HISTORY_SIZE = 5
MIN_SEGMENT_DURATION = 1.0
DEFAULT_MAX_SPEAKERS = 4
ABSOLUTE_MAX_SPEAKERS = 10
# Global variables
FAST_SENTENCE_END = True
SAMPLE_RATE = 16000
BUFFER_SIZE = 512
CHANNELS = 1
# Speaker colors
SPEAKER_COLORS = [
"#FFFF00", # Yellow
"#FF0000", # Red
"#00FF00", # Green
"#00FFFF", # Cyan
"#FF00FF", # Magenta
"#0000FF", # Blue
"#FF8000", # Orange
"#00FF80", # Spring Green
"#8000FF", # Purple
"#FFFFFF", # White
]
SPEAKER_COLOR_NAMES = [
"Yellow", "Red", "Green", "Cyan", "Magenta",
"Blue", "Orange", "Spring Green", "Purple", "White"
]
class SpeechBrainEncoder:
"""ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
def __init__(self, device="cpu"):
self.device = device
self.model = None
self.embedding_dim = 192
self.model_loaded = False
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
os.makedirs(self.cache_dir, exist_ok=True)
def _download_model(self):
"""Download pre-trained SpeechBrain ECAPA-TDNN model if not present"""
model_url = "https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb/resolve/main/embedding_model.ckpt"
model_path = os.path.join(self.cache_dir, "embedding_model.ckpt")
if not os.path.exists(model_path):
print(f"Downloading ECAPA-TDNN model to {model_path}...")
urllib.request.urlretrieve(model_url, model_path)
return model_path
def load_model(self):
"""Load the ECAPA-TDNN model"""
try:
from speechbrain.pretrained import EncoderClassifier
model_path = self._download_model()
self.model = EncoderClassifier.from_hparams(
source="speechbrain/spkrec-ecapa-voxceleb",
savedir=self.cache_dir,
run_opts={"device": self.device}
)
self.model_loaded = True
return True
except Exception as e:
print(f"Error loading ECAPA-TDNN model: {e}")
return False
def embed_utterance(self, audio, sr=16000):
"""Extract speaker embedding from audio"""
if not self.model_loaded:
raise ValueError("Model not loaded. Call load_model() first.")
try:
if isinstance(audio, np.ndarray):
waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0)
else:
waveform = audio.unsqueeze(0)
if sr != 16000:
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
with torch.no_grad():
embedding = self.model.encode_batch(waveform)
return embedding.squeeze().cpu().numpy()
except Exception as e:
print(f"Error extracting embedding: {e}")
return np.zeros(self.embedding_dim)
class AudioProcessor:
"""Processes audio data to extract speaker embeddings"""
def __init__(self, encoder):
self.encoder = encoder
def extract_embedding(self, audio_int16):
try:
float_audio = audio_int16.astype(np.float32) / 32768.0
if np.abs(float_audio).max() > 1.0:
float_audio = float_audio / np.abs(float_audio).max()
embedding = self.encoder.embed_utterance(float_audio)
return embedding
except Exception as e:
print(f"Embedding extraction error: {e}")
return np.zeros(self.encoder.embedding_dim)
class SpeakerChangeDetector:
"""Speaker change detector that supports a configurable number of speakers"""
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
self.embedding_dim = embedding_dim
self.change_threshold = change_threshold
self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
self.current_speaker = 0
self.previous_embeddings = []
self.last_change_time = time.time()
self.mean_embeddings = [None] * self.max_speakers
self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
self.last_similarity = 0.0
self.active_speakers = set([0])
def set_max_speakers(self, max_speakers):
"""Update the maximum number of speakers"""
new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
if new_max < self.max_speakers:
for speaker_id in list(self.active_speakers):
if speaker_id >= new_max:
self.active_speakers.discard(speaker_id)
if self.current_speaker >= new_max:
self.current_speaker = 0
if new_max > self.max_speakers:
self.mean_embeddings.extend([None] * (new_max - self.max_speakers))
self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
else:
self.mean_embeddings = self.mean_embeddings[:new_max]
self.speaker_embeddings = self.speaker_embeddings[:new_max]
self.max_speakers = new_max
def set_change_threshold(self, threshold):
"""Update the threshold for detecting speaker changes"""
self.change_threshold = max(0.1, min(threshold, 0.99))
def add_embedding(self, embedding, timestamp=None):
"""Add a new embedding and check if there's a speaker change"""
current_time = timestamp or time.time()
if not self.previous_embeddings:
self.previous_embeddings.append(embedding)
self.speaker_embeddings[self.current_speaker].append(embedding)
if self.mean_embeddings[self.current_speaker] is None:
self.mean_embeddings[self.current_speaker] = embedding.copy()
return self.current_speaker, 1.0
current_mean = self.mean_embeddings[self.current_speaker]
if current_mean is not None:
similarity = 1.0 - cosine(embedding, current_mean)
else:
similarity = 1.0 - cosine(embedding, self.previous_embeddings[-1])
self.last_similarity = similarity
time_since_last_change = current_time - self.last_change_time
is_speaker_change = False
if time_since_last_change >= MIN_SEGMENT_DURATION:
if similarity < self.change_threshold:
best_speaker = self.current_speaker
best_similarity = similarity
for speaker_id in range(self.max_speakers):
if speaker_id == self.current_speaker:
continue
speaker_mean = self.mean_embeddings[speaker_id]
if speaker_mean is not None:
speaker_similarity = 1.0 - cosine(embedding, speaker_mean)
if speaker_similarity > best_similarity:
best_similarity = speaker_similarity
best_speaker = speaker_id
if best_speaker != self.current_speaker:
is_speaker_change = True
self.current_speaker = best_speaker
elif len(self.active_speakers) < self.max_speakers:
for new_id in range(self.max_speakers):
if new_id not in self.active_speakers:
is_speaker_change = True
self.current_speaker = new_id
self.active_speakers.add(new_id)
break
if is_speaker_change:
self.last_change_time = current_time
self.previous_embeddings.append(embedding)
if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE:
self.previous_embeddings.pop(0)
self.speaker_embeddings[self.current_speaker].append(embedding)
self.active_speakers.add(self.current_speaker)
if len(self.speaker_embeddings[self.current_speaker]) > 30:
self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-30:]
if self.speaker_embeddings[self.current_speaker]:
self.mean_embeddings[self.current_speaker] = np.mean(
self.speaker_embeddings[self.current_speaker], axis=0
)
return self.current_speaker, similarity
def get_color_for_speaker(self, speaker_id):
"""Return color for speaker ID"""
if 0 <= speaker_id < len(SPEAKER_COLORS):
return SPEAKER_COLORS[speaker_id]
return "#FFFFFF"
def get_status_info(self):
"""Return status information about the speaker change detector"""
speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)]
return {
"current_speaker": self.current_speaker,
"speaker_counts": speaker_counts,
"active_speakers": len(self.active_speakers),
"max_speakers": self.max_speakers,
"last_similarity": self.last_similarity,
"threshold": self.change_threshold
}
class RealtimeSpeakerDiarization:
def __init__(self):
self.encoder = None
self.audio_processor = None
self.speaker_detector = None
self.recorder = None
self.sentence_queue = queue.Queue()
self.full_sentences = []
self.sentence_speakers = []
self.pending_sentences = []
self.displayed_text = ""
self.last_realtime_text = ""
self.is_running = False
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
self.max_speakers = DEFAULT_MAX_SPEAKERS
self.current_conversation = ""
def initialize_models(self):
"""Initialize the speaker encoder model"""
try:
device_str = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device_str}")
self.encoder = SpeechBrainEncoder(device=device_str)
success = self.encoder.load_model()
if success:
self.audio_processor = AudioProcessor(self.encoder)
self.speaker_detector = SpeakerChangeDetector(
embedding_dim=self.encoder.embedding_dim,
change_threshold=self.change_threshold,
max_speakers=self.max_speakers
)
print("ECAPA-TDNN model loaded successfully!")
return True
else:
print("Failed to load ECAPA-TDNN model")
return False
except Exception as e:
print(f"Model initialization error: {e}")
return False
def live_text_detected(self, text):
"""Callback for real-time transcription updates"""
text = text.strip()
if text:
sentence_delimiters = '.?!。'
prob_sentence_end = (
len(self.last_realtime_text) > 0
and text[-1] in sentence_delimiters
and self.last_realtime_text[-1] in sentence_delimiters
)
self.last_realtime_text = text
if prob_sentence_end and FAST_SENTENCE_END:
self.recorder.stop()
elif prob_sentence_end:
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[0]
else:
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[1]
def process_final_text(self, text):
"""Process final transcribed text with speaker embedding"""
text = text.strip()
if text:
try:
bytes_data = self.recorder.last_transcription_bytes
self.sentence_queue.put((text, bytes_data))
self.pending_sentences.append(text)
except Exception as e:
print(f"Error processing final text: {e}")
def process_sentence_queue(self):
"""Process sentences in the queue for speaker detection"""
while self.is_running:
try:
text, bytes_data = self.sentence_queue.get(timeout=1)
# Convert audio data to int16
audio_int16 = np.frombuffer(bytes_data, dtype=np.int16)
# Extract speaker embedding
speaker_embedding = self.audio_processor.extract_embedding(audio_int16)
# Store sentence and embedding
self.full_sentences.append((text, speaker_embedding))
# Fill in missing speaker assignments
while len(self.sentence_speakers) < len(self.full_sentences) - 1:
self.sentence_speakers.append(0)
# Detect speaker changes
speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding)
self.sentence_speakers.append(speaker_id)
# Remove from pending
if text in self.pending_sentences:
self.pending_sentences.remove(text)
# Update conversation display
self.current_conversation = self.get_formatted_conversation()
except queue.Empty:
continue
except Exception as e:
print(f"Error processing sentence: {e}")
def start_recording(self):
"""Start the recording and transcription process"""
if self.encoder is None:
return "Please initialize models first!"
try:
# Setup recorder configuration for WebRTC input
recorder_config = {
'spinner': False,
'use_microphone': False, # We'll feed audio manually
'model': FINAL_TRANSCRIPTION_MODEL,
'language': TRANSCRIPTION_LANGUAGE,
'silero_sensitivity': SILERO_SENSITIVITY,
'webrtc_sensitivity': WEBRTC_SENSITIVITY,
'post_speech_silence_duration': SILENCE_THRESHS[1],
'min_length_of_recording': MIN_LENGTH_OF_RECORDING,
'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
'min_gap_between_recordings': 0,
'enable_realtime_transcription': True,
'realtime_processing_pause': 0,
'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
'on_realtime_transcription_update': self.live_text_detected,
'beam_size': FINAL_BEAM_SIZE,
'beam_size_realtime': REALTIME_BEAM_SIZE,
'buffer_size': BUFFER_SIZE,
'sample_rate': SAMPLE_RATE,
}
self.recorder = AudioToTextRecorder(**recorder_config)
# Start sentence processing thread
self.is_running = True
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
self.sentence_thread.start()
# Start transcription thread
self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True)
self.transcription_thread.start()
return "Recording started successfully! FastRTC audio input ready."
except Exception as e:
return f"Error starting recording: {e}"
def run_transcription(self):
"""Run the transcription loop"""
try:
while self.is_running:
self.recorder.text(self.process_final_text)
except Exception as e:
print(f"Transcription error: {e}")
def stop_recording(self):
"""Stop the recording process"""
self.is_running = False
if self.recorder:
self.recorder.stop()
return "Recording stopped!"
def clear_conversation(self):
"""Clear all conversation data"""
self.full_sentences = []
self.sentence_speakers = []
self.pending_sentences = []
self.displayed_text = ""
self.last_realtime_text = ""
self.current_conversation = "Conversation cleared!"
if self.speaker_detector:
self.speaker_detector = SpeakerChangeDetector(
embedding_dim=self.encoder.embedding_dim,
change_threshold=self.change_threshold,
max_speakers=self.max_speakers
)
return "Conversation cleared!"
def update_settings(self, threshold, max_speakers):
"""Update speaker detection settings"""
self.change_threshold = threshold
self.max_speakers = max_speakers
if self.speaker_detector:
self.speaker_detector.set_change_threshold(threshold)
self.speaker_detector.set_max_speakers(max_speakers)
return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}"
def get_formatted_conversation(self):
"""Get the formatted conversation with speaker colors"""
try:
sentences_with_style = []
# Process completed sentences
for i, sentence in enumerate(self.full_sentences):
sentence_text, _ = sentence
if i >= len(self.sentence_speakers):
color = "#FFFFFF"
speaker_name = "Unknown"
else:
speaker_id = self.sentence_speakers[i]
color = self.speaker_detector.get_color_for_speaker(speaker_id)
speaker_name = f"Speaker {speaker_id + 1}"
sentences_with_style.append(
f'<span style="color:{color};"><b>{speaker_name}:</b> {sentence_text}</span>')
# Add pending sentences
for pending_sentence in self.pending_sentences:
sentences_with_style.append(
f'<span style="color:#60FFFF;"><b>Processing:</b> {pending_sentence}</span>')
if sentences_with_style:
return "<br><br>".join(sentences_with_style)
else:
return "Waiting for speech input..."
except Exception as e:
return f"Error formatting conversation: {e}"
def get_status_info(self):
"""Get current status information"""
if not self.speaker_detector:
return "Speaker detector not initialized"
try:
status = self.speaker_detector.get_status_info()
status_lines = [
f"**Current Speaker:** {status['current_speaker'] + 1}",
f"**Active Speakers:** {status['active_speakers']} of {status['max_speakers']}",
f"**Last Similarity:** {status['last_similarity']:.3f}",
f"**Change Threshold:** {status['threshold']:.2f}",
f"**Total Sentences:** {len(self.full_sentences)}",
"",
"**Speaker Segment Counts:**"
]
for i in range(status['max_speakers']):
color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}"
status_lines.append(f"Speaker {i+1} ({color_name}): {status['speaker_counts'][i]}")
return "\n".join(status_lines)
except Exception as e:
return f"Error getting status: {e}"
def process_audio(self, audio_data):
"""Process audio data from FastRTC"""
if not self.is_running or not self.recorder:
return
try:
# Extract audio data from FastRTC format (sample_rate, numpy_array)
sample_rate, audio_array = audio_data
# Convert to int16 format
if audio_array.dtype != np.int16:
audio_array = (audio_array * 32767).astype(np.int16)
# Convert to bytes and feed to recorder
audio_bytes = audio_array.tobytes()
self.recorder.feed_audio(audio_bytes)
except Exception as e:
print(f"Error processing FastRTC audio: {e}")
# FastRTC Audio Handler
class DiarizationHandler(AsyncStreamHandler):
def __init__(self, diarization_system):
super().__init__()
self.diarization_system = diarization_system
def copy(self):
# Return a fresh handler for each new stream connection
return DiarizationHandler(self.diarization_system)
async def emit(self):
"""Not used in this implementation"""
return None
async def receive(self, data):
"""Receive audio data from FastRTC and process it"""
if self.diarization_system.is_running:
self.diarization_system.process_audio(data)
# Global instance
diarization_system = RealtimeSpeakerDiarization()
def initialize_system():
"""Initialize the diarization system"""
success = diarization_system.initialize_models()
if success:
return "✅ System initialized successfully! Models loaded."
else:
return "❌ Failed to initialize system. Please check the logs."
def start_recording():
"""Start recording and transcription"""
return diarization_system.start_recording()
def stop_recording():
"""Stop recording and transcription"""
return diarization_system.stop_recording()
def clear_conversation():
"""Clear the conversation"""
return diarization_system.clear_conversation()
def update_settings(threshold, max_speakers):
"""Update system settings"""
return diarization_system.update_settings(threshold, max_speakers)
def get_conversation():
"""Get the current conversation"""
return diarization_system.get_formatted_conversation()
def get_status():
"""Get system status"""
return diarization_system.get_status_info()
# Get Cloudflare TURN credentials for FastRTC
async def get_cloudflare_credentials():
# Check if HF_TOKEN is set in environment
hf_token = os.environ.get("HF_TOKEN")
# If not set, use a default Hugging Face token if available
if not hf_token:
# Log a warning that user should set their own token
print("Warning: HF_TOKEN environment variable not set. Please set your own Hugging Face token.")
# Try to use the Hugging Face token from the environment
from huggingface_hub import HfApi
try:
api = HfApi()
hf_token = api.token
if not hf_token:
print("Error: No Hugging Face token available. TURN relay may not work properly.")
except:
print("Error: Failed to get Hugging Face token. TURN relay may not work properly.")
# Get Cloudflare TURN credentials using the Hugging Face token
if hf_token:
try:
return await get_cloudflare_turn_credentials_async(hf_token=hf_token)
except Exception as e:
print(f"Error getting Cloudflare TURN credentials: {e}")
# Fallback to a default configuration that may not work
return {
"iceServers": [
{
"urls": "stun:stun.l.google.com:19302"
}
]
}
# Setup FastRTC stream handler with TURN server configuration
def setup_fastrtc_handler():
"""Set up FastRTC audio stream handler with TURN server configuration"""
handler = DiarizationHandler(diarization_system)
# Get server-side credentials (longer TTL)
server_credentials = get_cloudflare_turn_credentials(ttl=360000)
stream = Stream(
handler=handler,
modality="audio",
mode="receive",
rtc_configuration=get_cloudflare_credentials, # Async function for client-side credentials
server_rtc_configuration=server_credentials # Server-side credentials with longer TTL
)
return stream
# Create Gradio interface
def create_interface():
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Monochrome()) as interface:
gr.Markdown("# 🎤 Real-time Speech Recognition with Speaker Diarization")
gr.Markdown("This app performs real-time speech recognition with automatic speaker identification and color-coding.")
with gr.Row():
with gr.Column(scale=2):
# FastRTC Audio Component
fastrtc_html = gr.HTML("""
<div class="fastrtc-container" style="margin-bottom: 20px;">
<h3>🎙️ FastRTC Audio Input</h3>
<p>Click the button below to start the audio stream:</p>
<button id="start-fastrtc" style="background: #3498db; color: white; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer;">
Start FastRTC Audio
</button>
<div id="fastrtc-status" style="margin-top: 10px; font-style: italic;">Not connected</div>
<script>
document.getElementById('start-fastrtc').addEventListener('click', function() {
document.getElementById('fastrtc-status').textContent = 'Connecting...';
// FastRTC will initialize the connection
fetch('/start-rtc', { method: 'POST' })
.then(response => response.text())
.then(data => {
document.getElementById('fastrtc-status').textContent = 'Connected! Speak now...';
})
.catch(error => {
document.getElementById('fastrtc-status').textContent = 'Connection error: ' + error;
});
});
</script>
</div>
""")
# Main conversation display
conversation_output = gr.HTML(
value="<i>Click 'Initialize System' to start...</i>",
label="Live Conversation"
)
# Control buttons
with gr.Row():
init_btn = gr.Button("🔧 Initialize System", variant="secondary")
start_btn = gr.Button("🎙️ Start Recording", variant="primary", interactive=False)
stop_btn = gr.Button("⏹️ Stop Recording", variant="stop", interactive=False)
clear_btn = gr.Button("🗑️ Clear Conversation", interactive=False)
# Status display
status_output = gr.Textbox(
label="System Status",
value="System not initialized",
lines=8,
interactive=False
)
with gr.Column(scale=1):
# Settings panel
gr.Markdown("## ⚙️ Settings")
threshold_slider = gr.Slider(
minimum=0.1,
maximum=0.95,
step=0.05,
value=DEFAULT_CHANGE_THRESHOLD,
label="Speaker Change Sensitivity",
info="Lower values = more sensitive to speaker changes"
)
max_speakers_slider = gr.Slider(
minimum=2,
maximum=ABSOLUTE_MAX_SPEAKERS,
step=1,
value=DEFAULT_MAX_SPEAKERS,
label="Maximum Number of Speakers"
)
update_settings_btn = gr.Button("Update Settings")
# Instructions
gr.Markdown("## 📝 Instructions")
gr.Markdown("""
1. Click **Initialize System** to load models
2. Click **Start Recording** to begin processing
3. Click **Start FastRTC Audio** to connect your microphone
4. Allow microphone access when prompted
5. Speak into your microphone
6. Watch real-time transcription with speaker labels
7. Adjust settings as needed
""")
# Speaker color legend
gr.Markdown("## 🎨 Speaker Colors")
color_info = []
for i, (color, name) in enumerate(zip(SPEAKER_COLORS, SPEAKER_COLOR_NAMES)):
color_info.append(f'<span style="color:{color};">■</span> Speaker {i+1} ({name})')
gr.HTML("<br>".join(color_info[:DEFAULT_MAX_SPEAKERS]))
# FastRTC Integration Notice
gr.Markdown("""
## ℹ️ About FastRTC
This app uses FastRTC for low-latency audio streaming.
For optimal performance, use a modern browser and allow microphone access when prompted.
""")
# Hugging Face Token Information
gr.Markdown("""
## 🔑 Hugging Face Token
This app uses Cloudflare TURN server via Hugging Face integration.
If audio connection fails, set your HF_TOKEN environment variable in the Space settings.
""")
# Auto-refresh conversation and status
def refresh_display():
return diarization_system.get_formatted_conversation(), diarization_system.get_status_info()
# Event handlers
def on_initialize():
result = initialize_system()
if "successfully" in result:
return (
result,
gr.update(interactive=True), # start_btn
gr.update(interactive=True), # clear_btn
get_conversation(),
get_status()
)
else:
return (
result,
gr.update(interactive=False), # start_btn
gr.update(interactive=False), # clear_btn
get_conversation(),
get_status()
)
def on_start():
result = start_recording()
return (
result,
gr.update(interactive=False), # start_btn
gr.update(interactive=True), # stop_btn
)
def on_stop():
result = stop_recording()
return (
result,
gr.update(interactive=True), # start_btn
gr.update(interactive=False), # stop_btn
)
# Connect event handlers
init_btn.click(
on_initialize,
outputs=[status_output, start_btn, clear_btn, conversation_output, status_output]
)
start_btn.click(
on_start,
outputs=[status_output, start_btn, stop_btn]
)
stop_btn.click(
on_stop,
outputs=[status_output, start_btn, stop_btn]
)
clear_btn.click(
clear_conversation,
outputs=[status_output]
)
update_settings_btn.click(
update_settings,
inputs=[threshold_slider, max_speakers_slider],
outputs=[status_output]
)
# Auto-refresh every 2 seconds when recording
refresh_timer = gr.Timer(2.0)
refresh_timer.tick(
refresh_display,
outputs=[conversation_output, status_output]
)
return interface
# 1) Create FastAPI app
app = FastAPI()
# 2) Create Gradio interface
gradio_interface = create_interface()
# 3) Mount Gradio onto FastAPI at root
app = gr.mount_gradio_app(app, gradio_interface, path="/")
# 4) Initialize and mount FastRTC stream on the same app
rtc_stream = setup_fastrtc_handler()
rtc_stream.mount(app)
# 5) Expose an endpoint to trigger the client-side RTC handshake
@app.post("/start-rtc")
async def start_rtc():
await rtc_stream.start_client()
return {"status": "success"}
# 6) Local dev via uvicorn; HF Spaces will auto-detect 'app' and ignore this
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)