File size: 30,208 Bytes
66992f6
 
af81629
640dd0e
af81629
640dd0e
af81629
 
640dd0e
66992f6
25dcfd9
640dd0e
88f78ff
 
66992f6
640dd0e
 
 
 
 
 
af81629
640dd0e
 
 
 
 
 
af81629
 
 
 
640dd0e
 
 
 
af81629
640dd0e
 
66992f6
640dd0e
66992f6
640dd0e
 
 
 
 
 
 
 
 
 
66992f6
 
af81629
640dd0e
 
af81629
 
 
 
640dd0e
66992f6
 
640dd0e
 
 
 
 
 
25dcfd9
 
 
 
 
 
 
 
 
 
 
af81629
640dd0e
 
 
 
25dcfd9
 
640dd0e
 
 
 
 
 
 
 
 
25dcfd9
640dd0e
af81629
 
640dd0e
 
 
 
66992f6
 
640dd0e
af81629
640dd0e
66992f6
af81629
 
 
640dd0e
 
 
 
 
 
 
 
 
 
 
 
 
 
25dcfd9
640dd0e
25dcfd9
66992f6
640dd0e
 
66992f6
25dcfd9
88f78ff
25dcfd9
66992f6
640dd0e
 
66992f6
af81629
 
640dd0e
 
af81629
 
 
66992f6
af81629
 
 
66992f6
af81629
 
 
 
 
 
 
 
 
 
 
640dd0e
af81629
 
 
 
 
 
66992f6
af81629
 
66992f6
af81629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66992f6
af81629
 
640dd0e
af81629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66992f6
af81629
 
 
 
66992f6
 
 
af81629
 
 
 
 
640dd0e
 
 
 
 
 
 
 
 
 
 
 
 
66992f6
af81629
25dcfd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66992f6
640dd0e
 
 
25dcfd9
 
 
640dd0e
 
25dcfd9
 
 
 
640dd0e
 
 
 
 
66992f6
640dd0e
 
 
 
 
 
 
 
 
 
 
 
 
25dcfd9
 
640dd0e
 
25dcfd9
640dd0e
 
 
 
 
25dcfd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
640dd0e
66992f6
25dcfd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66992f6
25dcfd9
 
 
 
88f78ff
25dcfd9
 
 
88f78ff
25dcfd9
66992f6
 
25dcfd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af81629
640dd0e
 
 
 
25dcfd9
 
 
640dd0e
 
 
 
 
 
 
af81629
25dcfd9
af81629
640dd0e
 
 
 
af81629
640dd0e
 
 
66992f6
25dcfd9
640dd0e
 
 
 
 
 
25dcfd9
640dd0e
 
 
 
 
 
 
 
 
 
 
 
25dcfd9
 
 
 
 
 
 
 
 
640dd0e
 
 
af81629
 
 
640dd0e
 
 
 
 
 
 
 
 
 
 
25dcfd9
640dd0e
 
 
 
 
 
 
 
 
 
 
 
af81629
 
 
25dcfd9
66992f6
 
640dd0e
 
 
 
25dcfd9
640dd0e
25dcfd9
 
 
 
 
 
af81629
640dd0e
25dcfd9
 
 
af81629
 
 
 
640dd0e
 
 
 
 
 
 
af81629
25dcfd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
640dd0e
66992f6
865f14c
25dcfd9
 
66992f6
 
640dd0e
25dcfd9
 
 
 
 
 
640dd0e
88f78ff
25dcfd9
88f78ff
25dcfd9
 
88f78ff
 
 
 
25dcfd9
 
 
 
 
 
 
 
 
 
 
 
640dd0e
af81629
640dd0e
 
af81629
 
66992f6
640dd0e
66992f6
640dd0e
 
25dcfd9
66992f6
 
af81629
 
 
 
640dd0e
 
af81629
66992f6
25dcfd9
88f78ff
25dcfd9
 
 
 
 
 
 
 
 
 
af81629
 
640dd0e
 
25dcfd9
 
af81629
25dcfd9
 
 
 
 
66992f6
 
25dcfd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
640dd0e
25dcfd9
 
640dd0e
 
25dcfd9
 
 
640dd0e
 
25dcfd9
 
 
66992f6
 
af81629
640dd0e
25dcfd9
640dd0e
 
 
 
 
25dcfd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66992f6
 
640dd0e
66992f6
af81629
66992f6
640dd0e
 
66992f6
25dcfd9
 
66992f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
import gradio as gr
import numpy as np
import queue
import torch
import time
import threading
import os
import urllib.request
import torchaudio
from scipy.spatial.distance import cosine
from RealtimeSTT import AudioToTextRecorder
import json
import io
import wave

# Simplified configuration parameters
SILENCE_THRESHS = [0, 0.4]
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
FINAL_BEAM_SIZE = 5
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
REALTIME_BEAM_SIZE = 5
TRANSCRIPTION_LANGUAGE = "en"
SILERO_SENSITIVITY = 0.4
WEBRTC_SENSITIVITY = 3
MIN_LENGTH_OF_RECORDING = 0.7
PRE_RECORDING_BUFFER_DURATION = 0.35

# Speaker change detection parameters
DEFAULT_CHANGE_THRESHOLD = 0.7
EMBEDDING_HISTORY_SIZE = 5
MIN_SEGMENT_DURATION = 1.0
DEFAULT_MAX_SPEAKERS = 4
ABSOLUTE_MAX_SPEAKERS = 10

# Global variables
FAST_SENTENCE_END = True
SAMPLE_RATE = 16000
BUFFER_SIZE = 512
CHANNELS = 1

# Speaker colors
SPEAKER_COLORS = [
    "#FFFF00",  # Yellow
    "#FF0000",  # Red
    "#00FF00",  # Green
    "#00FFFF",  # Cyan
    "#FF00FF",  # Magenta
    "#0000FF",  # Blue
    "#FF8000",  # Orange
    "#00FF80",  # Spring Green
    "#8000FF",  # Purple
    "#FFFFFF",  # White
]

SPEAKER_COLOR_NAMES = [
    "Yellow", "Red", "Green", "Cyan", "Magenta", 
    "Blue", "Orange", "Spring Green", "Purple", "White"
]


class SpeechBrainEncoder:
    """ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
    def __init__(self, device="cpu"):
        self.device = device
        self.model = None
        self.embedding_dim = 192
        self.model_loaded = False
        self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
        os.makedirs(self.cache_dir, exist_ok=True)
    
    def _download_model(self):
        """Download pre-trained SpeechBrain ECAPA-TDNN model if not present"""
        model_url = "https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb/resolve/main/embedding_model.ckpt"
        model_path = os.path.join(self.cache_dir, "embedding_model.ckpt")
        
        if not os.path.exists(model_path):
            print(f"Downloading ECAPA-TDNN model to {model_path}...")
            urllib.request.urlretrieve(model_url, model_path)
        
        return model_path
    
    def load_model(self):
        """Load the ECAPA-TDNN model"""
        try:
            from speechbrain.pretrained import EncoderClassifier
            
            model_path = self._download_model()
            
            self.model = EncoderClassifier.from_hparams(
                source="speechbrain/spkrec-ecapa-voxceleb",
                savedir=self.cache_dir,
                run_opts={"device": self.device}
            )
            
            self.model_loaded = True
            return True
        except Exception as e:
            print(f"Error loading ECAPA-TDNN model: {e}")
            return False
    
    def embed_utterance(self, audio, sr=16000):
        """Extract speaker embedding from audio"""
        if not self.model_loaded:
            raise ValueError("Model not loaded. Call load_model() first.")
        
        try:
            if isinstance(audio, np.ndarray):
                waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0)
            else:
                waveform = audio.unsqueeze(0)
            
            if sr != 16000:
                waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
            
            with torch.no_grad():
                embedding = self.model.encode_batch(waveform)
                
            return embedding.squeeze().cpu().numpy()
        except Exception as e:
            print(f"Error extracting embedding: {e}")
            return np.zeros(self.embedding_dim)


class AudioProcessor:
    """Processes audio data to extract speaker embeddings"""
    def __init__(self, encoder):
        self.encoder = encoder
    
    def extract_embedding(self, audio_int16):
        try:
            float_audio = audio_int16.astype(np.float32) / 32768.0
            
            if np.abs(float_audio).max() > 1.0:
                float_audio = float_audio / np.abs(float_audio).max()
            
            embedding = self.encoder.embed_utterance(float_audio)
            
            return embedding
        except Exception as e:
            print(f"Embedding extraction error: {e}")
            return np.zeros(self.encoder.embedding_dim)


class SpeakerChangeDetector:
    """Speaker change detector that supports a configurable number of speakers"""
    def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
        self.embedding_dim = embedding_dim
        self.change_threshold = change_threshold
        self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
        self.current_speaker = 0
        self.previous_embeddings = []
        self.last_change_time = time.time()
        self.mean_embeddings = [None] * self.max_speakers
        self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
        self.last_similarity = 0.0
        self.active_speakers = set([0])
        
    def set_max_speakers(self, max_speakers):
        """Update the maximum number of speakers"""
        new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
        
        if new_max < self.max_speakers:
            for speaker_id in list(self.active_speakers):
                if speaker_id >= new_max:
                    self.active_speakers.discard(speaker_id)
            
            if self.current_speaker >= new_max:
                self.current_speaker = 0
        
        if new_max > self.max_speakers:
            self.mean_embeddings.extend([None] * (new_max - self.max_speakers))
            self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
        else:
            self.mean_embeddings = self.mean_embeddings[:new_max]
            self.speaker_embeddings = self.speaker_embeddings[:new_max]
        
        self.max_speakers = new_max
        
    def set_change_threshold(self, threshold):
        """Update the threshold for detecting speaker changes"""
        self.change_threshold = max(0.1, min(threshold, 0.99))
        
    def add_embedding(self, embedding, timestamp=None):
        """Add a new embedding and check if there's a speaker change"""
        current_time = timestamp or time.time()
        
        if not self.previous_embeddings:
            self.previous_embeddings.append(embedding)
            self.speaker_embeddings[self.current_speaker].append(embedding)
            if self.mean_embeddings[self.current_speaker] is None:
                self.mean_embeddings[self.current_speaker] = embedding.copy()
            return self.current_speaker, 1.0
        
        current_mean = self.mean_embeddings[self.current_speaker]
        if current_mean is not None:
            similarity = 1.0 - cosine(embedding, current_mean)
        else:
            similarity = 1.0 - cosine(embedding, self.previous_embeddings[-1])
        
        self.last_similarity = similarity
        
        time_since_last_change = current_time - self.last_change_time
        is_speaker_change = False
        
        if time_since_last_change >= MIN_SEGMENT_DURATION:
            if similarity < self.change_threshold:
                best_speaker = self.current_speaker
                best_similarity = similarity
                
                for speaker_id in range(self.max_speakers):
                    if speaker_id == self.current_speaker:
                        continue
                        
                    speaker_mean = self.mean_embeddings[speaker_id]
                    
                    if speaker_mean is not None:
                        speaker_similarity = 1.0 - cosine(embedding, speaker_mean)
                        
                        if speaker_similarity > best_similarity:
                            best_similarity = speaker_similarity
                            best_speaker = speaker_id
                
                if best_speaker != self.current_speaker:
                    is_speaker_change = True
                    self.current_speaker = best_speaker
                elif len(self.active_speakers) < self.max_speakers:
                    for new_id in range(self.max_speakers):
                        if new_id not in self.active_speakers:
                            is_speaker_change = True
                            self.current_speaker = new_id
                            self.active_speakers.add(new_id)
                            break
        
        if is_speaker_change:
            self.last_change_time = current_time
        
        self.previous_embeddings.append(embedding)
        if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE:
            self.previous_embeddings.pop(0)
        
        self.speaker_embeddings[self.current_speaker].append(embedding)
        self.active_speakers.add(self.current_speaker)
        
        if len(self.speaker_embeddings[self.current_speaker]) > 30:
            self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-30:]
            
        if self.speaker_embeddings[self.current_speaker]:
            self.mean_embeddings[self.current_speaker] = np.mean(
                self.speaker_embeddings[self.current_speaker], axis=0
            )
        
        return self.current_speaker, similarity
    
    def get_color_for_speaker(self, speaker_id):
        """Return color for speaker ID"""
        if 0 <= speaker_id < len(SPEAKER_COLORS):
            return SPEAKER_COLORS[speaker_id]
        return "#FFFFFF"
    
    def get_status_info(self):
        """Return status information about the speaker change detector"""
        speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)]
        
        return {
            "current_speaker": self.current_speaker,
            "speaker_counts": speaker_counts,
            "active_speakers": len(self.active_speakers),
            "max_speakers": self.max_speakers,
            "last_similarity": self.last_similarity,
            "threshold": self.change_threshold
        }


class WebRTCAudioProcessor:
    """Processes WebRTC audio streams for speaker diarization"""
    def __init__(self, diarization_system):
        self.diarization_system = diarization_system
        self.audio_buffer = []
        self.buffer_lock = threading.Lock()
        self.processing_thread = None
        self.is_processing = False
        
    def process_audio(self, audio_data, sample_rate):
        """Process incoming audio data from WebRTC"""
        try:
            # Convert audio data to numpy array if needed
            if isinstance(audio_data, bytes):
                audio_array = np.frombuffer(audio_data, dtype=np.int16)
            elif isinstance(audio_data, tuple):
                # Handle tuple format (sample_rate, audio_array)
                sample_rate, audio_array = audio_data
                if isinstance(audio_array, np.ndarray):
                    if audio_array.dtype != np.int16:
                        audio_array = (audio_array * 32767).astype(np.int16)
                else:
                    audio_array = np.array(audio_array, dtype=np.int16)
            else:
                audio_array = np.array(audio_data, dtype=np.int16)
            
            # Ensure mono audio
            if len(audio_array.shape) > 1:
                audio_array = audio_array[:, 0]
            
            # Add to buffer
            with self.buffer_lock:
                self.audio_buffer.extend(audio_array)
                
                # Process buffer when it's large enough (1 second of audio)
                if len(self.audio_buffer) >= sample_rate:
                    buffer_to_process = np.array(self.audio_buffer[:sample_rate])
                    self.audio_buffer = self.audio_buffer[sample_rate//2:]  # Keep 50% overlap
                    
                    # Feed to recorder in separate thread
                    if self.diarization_system.recorder:
                        audio_bytes = buffer_to_process.tobytes()
                        self.diarization_system.recorder.feed_audio(audio_bytes)
                        
        except Exception as e:
            print(f"Error processing WebRTC audio: {e}")


class RealtimeSpeakerDiarization:
    def __init__(self):
        self.encoder = None
        self.audio_processor = None
        self.speaker_detector = None
        self.recorder = None
        self.webrtc_processor = None
        self.sentence_queue = queue.Queue()
        self.full_sentences = []
        self.sentence_speakers = []
        self.pending_sentences = []
        self.displayed_text = ""
        self.last_realtime_text = ""
        self.is_running = False
        self.change_threshold = DEFAULT_CHANGE_THRESHOLD
        self.max_speakers = DEFAULT_MAX_SPEAKERS
        
    def initialize_models(self):
        """Initialize the speaker encoder model"""
        try:
            device_str = "cuda" if torch.cuda.is_available() else "cpu"
            print(f"Using device: {device_str}")
            
            self.encoder = SpeechBrainEncoder(device=device_str)
            success = self.encoder.load_model()
            
            if success:
                self.audio_processor = AudioProcessor(self.encoder)
                self.speaker_detector = SpeakerChangeDetector(
                    embedding_dim=self.encoder.embedding_dim,
                    change_threshold=self.change_threshold,
                    max_speakers=self.max_speakers
                )
                self.webrtc_processor = WebRTCAudioProcessor(self)
                print("ECAPA-TDNN model loaded successfully!")
                return True
            else:
                print("Failed to load ECAPA-TDNN model")
                return False
        except Exception as e:
            print(f"Model initialization error: {e}")
            return False
    
    def live_text_detected(self, text):
        """Callback for real-time transcription updates"""
        text = text.strip()
        if text:
            sentence_delimiters = '.?!。'
            prob_sentence_end = (
                len(self.last_realtime_text) > 0
                and text[-1] in sentence_delimiters
                and self.last_realtime_text[-1] in sentence_delimiters
            )

            self.last_realtime_text = text

            if prob_sentence_end and FAST_SENTENCE_END:
                self.recorder.stop()
            elif prob_sentence_end:
                self.recorder.post_speech_silence_duration = SILENCE_THRESHS[0]
            else:
                self.recorder.post_speech_silence_duration = SILENCE_THRESHS[1]
    
    def process_final_text(self, text):
        """Process final transcribed text with speaker embedding"""
        text = text.strip()
        if text:
            try:
                bytes_data = self.recorder.last_transcription_bytes
                self.sentence_queue.put((text, bytes_data))
                self.pending_sentences.append(text)
            except Exception as e:
                print(f"Error processing final text: {e}")
    
    def process_sentence_queue(self):
        """Process sentences in the queue for speaker detection"""
        while self.is_running:
            try:
                text, bytes_data = self.sentence_queue.get(timeout=1)
                
                # Convert audio data to int16
                audio_int16 = np.int16(bytes_data * 32767)
                
                # Extract speaker embedding
                speaker_embedding = self.audio_processor.extract_embedding(audio_int16)
                
                # Store sentence and embedding
                self.full_sentences.append((text, speaker_embedding))
                
                # Fill in missing speaker assignments
                while len(self.sentence_speakers) < len(self.full_sentences) - 1:
                    self.sentence_speakers.append(0)
                
                # Detect speaker changes
                speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding)
                self.sentence_speakers.append(speaker_id)
                
                # Remove from pending
                if text in self.pending_sentences:
                    self.pending_sentences.remove(text)
                    
            except queue.Empty:
                continue
            except Exception as e:
                print(f"Error processing sentence: {e}")
    
    def start_recording(self):
        """Start the recording and transcription process"""
        if self.encoder is None:
            return "Please initialize models first!"
        
        try:
            # Setup recorder configuration for WebRTC input
            recorder_config = {
                'spinner': False,
                'use_microphone': False,  # We'll feed audio manually
                'model': FINAL_TRANSCRIPTION_MODEL,
                'language': TRANSCRIPTION_LANGUAGE,
                'silero_sensitivity': SILERO_SENSITIVITY,
                'webrtc_sensitivity': WEBRTC_SENSITIVITY,
                'post_speech_silence_duration': SILENCE_THRESHS[1],
                'min_length_of_recording': MIN_LENGTH_OF_RECORDING,
                'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
                'min_gap_between_recordings': 0,
                'enable_realtime_transcription': True,
                'realtime_processing_pause': 0,
                'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
                'on_realtime_transcription_update': self.live_text_detected,
                'beam_size': FINAL_BEAM_SIZE,
                'beam_size_realtime': REALTIME_BEAM_SIZE,
                'buffer_size': BUFFER_SIZE,
                'sample_rate': SAMPLE_RATE,
            }

            self.recorder = AudioToTextRecorder(**recorder_config)
            
            # Start sentence processing thread
            self.is_running = True
            self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
            self.sentence_thread.start()
            
            # Start transcription thread
            self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True)
            self.transcription_thread.start()
            
            return "Recording started successfully! WebRTC audio input ready."
            
        except Exception as e:
            return f"Error starting recording: {e}"
    
    def run_transcription(self):
        """Run the transcription loop"""
        try:
            while self.is_running:
                self.recorder.text(self.process_final_text)
        except Exception as e:
            print(f"Transcription error: {e}")
    
    def stop_recording(self):
        """Stop the recording process"""
        self.is_running = False
        if self.recorder:
            self.recorder.stop()
        return "Recording stopped!"
    
    def clear_conversation(self):
        """Clear all conversation data"""
        self.full_sentences = []
        self.sentence_speakers = []
        self.pending_sentences = []
        self.displayed_text = ""
        self.last_realtime_text = ""
        
        if self.speaker_detector:
            self.speaker_detector = SpeakerChangeDetector(
                embedding_dim=self.encoder.embedding_dim,
                change_threshold=self.change_threshold,
                max_speakers=self.max_speakers
            )
        
        return "Conversation cleared!"
    
    def update_settings(self, threshold, max_speakers):
        """Update speaker detection settings"""
        self.change_threshold = threshold
        self.max_speakers = max_speakers
        
        if self.speaker_detector:
            self.speaker_detector.set_change_threshold(threshold)
            self.speaker_detector.set_max_speakers(max_speakers)
        
        return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}"
    
    def get_formatted_conversation(self):
        """Get the formatted conversation with speaker colors"""
        try:
            sentences_with_style = []
            
            # Process completed sentences
            for i, sentence in enumerate(self.full_sentences):
                sentence_text, _ = sentence
                if i >= len(self.sentence_speakers):
                    color = "#FFFFFF"
                else:
                    speaker_id = self.sentence_speakers[i]
                    color = self.speaker_detector.get_color_for_speaker(speaker_id)
                    speaker_name = f"Speaker {speaker_id + 1}"
                    
                sentences_with_style.append(
                    f'<span style="color:{color};"><b>{speaker_name}:</b> {sentence_text}</span>')
            
            # Add pending sentences
            for pending_sentence in self.pending_sentences:
                sentences_with_style.append(
                    f'<span style="color:#60FFFF;"><b>Processing:</b> {pending_sentence}</span>')
            
            if sentences_with_style:
                return "<br><br>".join(sentences_with_style)
            else:
                return "Waiting for speech input..."
                
        except Exception as e:
            return f"Error formatting conversation: {e}"
    
    def get_status_info(self):
        """Get current status information"""
        if not self.speaker_detector:
            return "Speaker detector not initialized"
        
        try:
            status = self.speaker_detector.get_status_info()
            
            status_lines = [
                f"**Current Speaker:** {status['current_speaker'] + 1}",
                f"**Active Speakers:** {status['active_speakers']} of {status['max_speakers']}",
                f"**Last Similarity:** {status['last_similarity']:.3f}",
                f"**Change Threshold:** {status['threshold']:.2f}",
                f"**Total Sentences:** {len(self.full_sentences)}",
                "",
                "**Speaker Segment Counts:**"
            ]
            
            for i in range(status['max_speakers']):
                color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}"
                status_lines.append(f"Speaker {i+1} ({color_name}): {status['speaker_counts'][i]}")
            
            return "\n".join(status_lines)
            
        except Exception as e:
            return f"Error getting status: {e}"


# Global instance
diarization_system = RealtimeSpeakerDiarization()


def initialize_system():
    """Initialize the diarization system"""
    success = diarization_system.initialize_models()
    if success:
        return "βœ… System initialized successfully! Models loaded."
    else:
        return "❌ Failed to initialize system. Please check the logs."


def start_recording():
    """Start recording and transcription"""
    return diarization_system.start_recording()


def stop_recording():
    """Stop recording and transcription"""
    return diarization_system.stop_recording()


def clear_conversation():
    """Clear the conversation"""
    return diarization_system.clear_conversation()


def update_settings(threshold, max_speakers):
    """Update system settings"""
    return diarization_system.update_settings(threshold, max_speakers)


def get_conversation():
    """Get the current conversation"""
    return diarization_system.get_formatted_conversation()


def get_status():
    """Get system status"""
    return diarization_system.get_status_info()


def process_audio_stream(audio):
    """Process audio stream from WebRTC"""
    if diarization_system.webrtc_processor and diarization_system.is_running:
        diarization_system.webrtc_processor.process_audio(audio, SAMPLE_RATE)
    return None


# Create Gradio interface
def create_interface():
    with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Monochrome()) as app:
        gr.Markdown("# 🎀 Real-time Speech Recognition with Speaker Diarization")
        gr.Markdown("This app performs real-time speech recognition with automatic speaker identification and color-coding using WebRTC.")
        
        with gr.Row():
            with gr.Column(scale=2):
                # WebRTC Audio Input
                audio_input = gr.Audio(
                    sources=["microphone"],
                    streaming=True,
                    label="πŸŽ™οΈ Microphone Input",
                    type="numpy"
                )
                
                # Main conversation display
                conversation_output = gr.HTML(
                    value="<i>Click 'Initialize System' to start...</i>",
                    label="Live Conversation"
                )
                
                # Control buttons
                with gr.Row():
                    init_btn = gr.Button("πŸ”§ Initialize System", variant="secondary")
                    start_btn = gr.Button("πŸŽ™οΈ Start Recording", variant="primary", interactive=False)
                    stop_btn = gr.Button("⏹️ Stop Recording", variant="stop", interactive=False)
                    clear_btn = gr.Button("πŸ—‘οΈ Clear Conversation", interactive=False)
                
                # Status display
                status_output = gr.Textbox(
                    label="System Status",
                    value="System not initialized",
                    lines=8,
                    interactive=False
                )
            
            with gr.Column(scale=1):
                # Settings panel
                gr.Markdown("## βš™οΈ Settings")
                
                threshold_slider = gr.Slider(
                    minimum=0.1,
                    maximum=0.95,
                    step=0.05,
                    value=DEFAULT_CHANGE_THRESHOLD,
                    label="Speaker Change Sensitivity",
                    info="Lower values = more sensitive to speaker changes"
                )
                
                max_speakers_slider = gr.Slider(
                    minimum=2,
                    maximum=ABSOLUTE_MAX_SPEAKERS,
                    step=1,
                    value=DEFAULT_MAX_SPEAKERS,
                    label="Maximum Number of Speakers"
                )
                
                update_settings_btn = gr.Button("Update Settings")
                
                # Instructions
                gr.Markdown("## πŸ“ Instructions")
                gr.Markdown("""
                1. Click **Initialize System** to load models
                2. Click **Start Recording** to begin processing
                3. Allow microphone access when prompted
                4. Speak into your microphone
                5. Watch real-time transcription with speaker labels
                6. Adjust settings as needed
                """)
                
                # Speaker color legend
                gr.Markdown("## 🎨 Speaker Colors")
                color_info = []
                for i, (color, name) in enumerate(zip(SPEAKER_COLORS, SPEAKER_COLOR_NAMES)):
                    color_info.append(f'<span style="color:{color};">β– </span> Speaker {i+1} ({name})')
                
                gr.HTML("<br>".join(color_info[:DEFAULT_MAX_SPEAKERS]))
        
        # Auto-refresh conversation and status
        def refresh_display():
            return get_conversation(), get_status()
        
        # Event handlers
        def on_initialize():
            result = initialize_system()
            if "successfully" in result:
                return (
                    result,
                    gr.update(interactive=True),   # start_btn
                    gr.update(interactive=True),   # clear_btn
                    get_conversation(),
                    get_status()
                )
            else:
                return (
                    result,
                    gr.update(interactive=False),  # start_btn
                    gr.update(interactive=False),  # clear_btn
                    get_conversation(),
                    get_status()
                )
        
        def on_start():
            result = start_recording()
            return (
                result,
                gr.update(interactive=False),  # start_btn
                gr.update(interactive=True),   # stop_btn
            )
        
        def on_stop():
            result = stop_recording()
            return (
                result,
                gr.update(interactive=True),   # start_btn
                gr.update(interactive=False),  # stop_btn
            )
        
        # Connect event handlers
        init_btn.click(
            on_initialize,
            outputs=[status_output, start_btn, clear_btn, conversation_output, status_output]
        )
        
        start_btn.click(
            on_start,
            outputs=[status_output, start_btn, stop_btn]
        )
        
        stop_btn.click(
            on_stop,
            outputs=[status_output, start_btn, stop_btn]
        )
        
        clear_btn.click(
            clear_conversation,
            outputs=[status_output]
        )
        
        update_settings_btn.click(
            update_settings,
            inputs=[threshold_slider, max_speakers_slider],
            outputs=[status_output]
        )
        
        # Connect WebRTC audio stream to processing
        audio_input.stream(
            process_audio_stream,
            inputs=[audio_input],
            outputs=[]
        )
        
        # Auto-refresh every 2 seconds when recording
        refresh_timer = gr.Timer(2.0)
        refresh_timer.tick(
            refresh_display,
            outputs=[conversation_output, status_output]
        )
    
    return app


if __name__ == "__main__":
    app = create_interface()
    app.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True
    )