File size: 6,964 Bytes
1d133a1
 
 
c277c70
 
9823a49
1d133a1
c277c70
1d133a1
c277c70
1d133a1
 
 
 
 
 
 
 
 
783f341
1d133a1
 
 
783f341
1d133a1
 
655b975
1d133a1
c277c70
1d133a1
c277c70
 
 
 
 
 
 
1d133a1
9823a49
655b975
c277c70
 
783f341
1d133a1
c277c70
1d133a1
c277c70
 
 
 
 
 
 
 
 
1d133a1
9823a49
1d133a1
c277c70
 
 
1d133a1
c277c70
 
 
 
 
 
1d133a1
 
 
 
 
c277c70
 
 
21fd183
c277c70
 
 
21fd183
c277c70
 
1d133a1
9823a49
1d133a1
783f341
 
1d133a1
 
9823a49
 
 
 
1d133a1
 
 
 
9823a49
 
655b975
9823a49
 
783f341
1d133a1
9823a49
 
1d133a1
783f341
 
1d133a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
783f341
655b975
1d133a1
 
c277c70
 
 
 
 
 
 
 
1d133a1
c277c70
21fd183
c277c70
 
 
 
 
 
 
 
655b975
c277c70
 
655b975
04621a9
 
 
1d133a1
9823a49
1d133a1
 
21fd183
1d133a1
 
 
783f341
c277c70
1d133a1
 
783f341
1d133a1
 
 
 
 
 
 
 
783f341
9823a49
 
1d133a1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import googleapiclient.discovery
import re
import yt_dlp
import whisper
from pydub import AudioSegment
import tempfile
from transformers import pipeline
from youtube_transcript_api import YouTubeTranscriptApi
import torch
import openai
import json
from urllib.parse import urlparse, parse_qs
import os
import gradio as gr

# API Keys setup
youtube_api_key = os.getenv("YOUTUBE_API_KEY")  # Set these as environment variables
openai_api_key = os.getenv("OPENAI_API_KEY")
openai.api_key = openai_api_key

# Validation for missing API keys
if not youtube_api_key:
    raise ValueError("YOUTUBE_API_KEY is not set. Please set it as an environment variable.")

if not openai_api_key:
    raise ValueError("OPENAI_API_KEY is not set. Please set it as an environment variable.")

# Utility Functions
def extract_video_id(url):
    """Extract the video ID from a YouTube URL."""
    try:
        parsed_url = urlparse(url)
        if "youtube.com" in parsed_url.netloc:
            query_params = parse_qs(parsed_url.query)
            return query_params.get('v', [None])[0]
        elif "youtu.be" in parsed_url.netloc:
            return parsed_url.path.strip("/")
        return None
    except Exception as e:
        print(f"Error parsing URL: {e}")
        return None

def get_video_duration(video_id):
    """Fetch the video duration."""
    try:
        youtube = googleapiclient.discovery.build("youtube", "v3", developerKey=youtube_api_key)
        request = youtube.videos().list(part="contentDetails", id=video_id)
        response = request.execute()
        if response["items"]:
            duration = response["items"][0]["contentDetails"]["duration"]
            match = re.match(r'PT(?:(\d+)H)?(?:(\d+)M)?(?:(\d+)S)?', duration)
            hours = int(match.group(1)) if match.group(1) else 0
            minutes = int(match.group(2)) if match.group(2) else 0
            seconds = int(match.group(3)) if match.group(3) else 0
            return hours * 60 + minutes + seconds / 60
        return None
    except Exception as e:
        print(f"Error fetching duration: {e}")
        return None

def download_and_transcribe_with_whisper(youtube_url):
    """Download audio and transcribe using Whisper."""
    try:
        with tempfile.TemporaryDirectory() as temp_dir:
            temp_audio_file = os.path.join(temp_dir, "audio.mp3")
            ydl_opts = {
                'format': 'bestaudio/best',
                'outtmpl': temp_audio_file,
                'postprocessors': [{
                    'key': 'FFmpegExtractAudio',
                    'preferredcodec': 'mp3',
                    'preferredquality': '192',
                }],
            }
            with yt_dlp.YoutubeDL(ydl_opts) as ydl:
                ydl.download([youtube_url])

            audio = AudioSegment.from_file(temp_audio_file)
            wav_file = os.path.join(temp_dir, "audio.wav")
            audio.export(wav_file, format="wav")

            model = whisper.load_model("large")
            result = model.transcribe(wav_file)
            return result['text']
    except Exception as e:
        print(f"Error during Whisper transcription: {e}")
        return None

def get_transcript_from_youtube_api(video_id, video_length):
    """Fetch transcript using YouTubeTranscriptApi."""
    try:
        transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
        for transcript in transcript_list:
            if not transcript.is_generated:
                return " ".join(segment['text'] for segment in transcript.fetch())
        if video_length > 15:
            auto_transcript = transcript_list.find_generated_transcript(['en'])
            return " ".join(segment['text'] for segment in auto_transcript.fetch())
        return None
    except Exception as e:
        print(f"Error fetching transcript: {e}")
        return None

def get_transcript(youtube_url):
    """Fetch transcript or use Whisper fallback."""
    video_id = extract_video_id(youtube_url)
    if not video_id:
        return "Invalid or unsupported YouTube URL."
    video_length = get_video_duration(video_id)
    if video_length:
        transcript = get_transcript_from_youtube_api(video_id, video_length)
        return transcript if transcript else download_and_transcribe_with_whisper(youtube_url)
    return "Error fetching video details."

def summarize_text(text):
    """Summarize text using Hugging Face's BART model."""
    try:
        summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if torch.cuda.is_available() else -1)
        max_input_length = 1024
        chunk_overlap = 100
        text_chunks = [
            text[i:i + max_input_length]
            for i in range(0, len(text), max_input_length - chunk_overlap)
        ]
        summaries = [
            summarizer(chunk, max_length=100, min_length=50, do_sample=False)[0]['summary_text']
            for chunk in text_chunks
        ]
        return " ".join(summaries)
    except Exception as e:
        print(f"Error during summarization: {e}")
        return None

def generate_optimized_content(summarized_text):
    """Generate optimized video metadata using GPT."""
    prompt = f"""
    Analyze the following summarized YouTube video transcript and:
    1. Extract the top 10 keywords.
    2. Generate an optimized title (less than 65 characters).
    3. Create an engaging description.
    4. Generate related tags for the video.

    Summarized Transcript:
    {summarized_text}

    Provide the results in the following JSON format:
    {{
        "keywords": ["keyword1", "keyword2", ..., "keyword10"],
        "title": "Generated Title",
        "description": "Generated Description",
        "tags": ["tag1", "tag2", ..., "tag10"]
    }}
    """
    try:
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=[
                {"role": "system", "content": "You are an SEO expert."},
                {"role": "user", "content": prompt}
            ]
        )
        return json.loads(response['choices'][0]['message']['content'])
    except Exception as e:
        print(f"Error generating metadata: {e}")
        return {"error": "Unable to generate metadata."}

# Main Gradio Interface
def process_video(youtube_url):
    """Complete video processing workflow."""
    transcript = get_transcript(youtube_url)
    if not transcript:
        return {"error": "Could not fetch the transcript. Please try another video."}
    summary = summarize_text(transcript)
    optimized_content = generate_optimized_content(summary)
    return optimized_content

iface = gr.Interface(
    fn=process_video,
    inputs=gr.Textbox(label="Enter YouTube URL"),
    outputs=gr.JSON(label="Optimized Metadata"),
    title="YouTube Video SEO Optimizer",
    description="Paste a YouTube URL to generate an SEO-friendly title, description, tags, and keywords."
)

if __name__ == "__main__":
    iface.launch()