Spaces:
Sleeping
Sleeping
File size: 6,964 Bytes
1d133a1 c277c70 9823a49 1d133a1 c277c70 1d133a1 c277c70 1d133a1 783f341 1d133a1 783f341 1d133a1 655b975 1d133a1 c277c70 1d133a1 c277c70 1d133a1 9823a49 655b975 c277c70 783f341 1d133a1 c277c70 1d133a1 c277c70 1d133a1 9823a49 1d133a1 c277c70 1d133a1 c277c70 1d133a1 c277c70 21fd183 c277c70 21fd183 c277c70 1d133a1 9823a49 1d133a1 783f341 1d133a1 9823a49 1d133a1 9823a49 655b975 9823a49 783f341 1d133a1 9823a49 1d133a1 783f341 1d133a1 783f341 655b975 1d133a1 c277c70 1d133a1 c277c70 21fd183 c277c70 655b975 c277c70 655b975 04621a9 1d133a1 9823a49 1d133a1 21fd183 1d133a1 783f341 c277c70 1d133a1 783f341 1d133a1 783f341 9823a49 1d133a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import googleapiclient.discovery
import re
import yt_dlp
import whisper
from pydub import AudioSegment
import tempfile
from transformers import pipeline
from youtube_transcript_api import YouTubeTranscriptApi
import torch
import openai
import json
from urllib.parse import urlparse, parse_qs
import os
import gradio as gr
# API Keys setup
youtube_api_key = os.getenv("YOUTUBE_API_KEY") # Set these as environment variables
openai_api_key = os.getenv("OPENAI_API_KEY")
openai.api_key = openai_api_key
# Validation for missing API keys
if not youtube_api_key:
raise ValueError("YOUTUBE_API_KEY is not set. Please set it as an environment variable.")
if not openai_api_key:
raise ValueError("OPENAI_API_KEY is not set. Please set it as an environment variable.")
# Utility Functions
def extract_video_id(url):
"""Extract the video ID from a YouTube URL."""
try:
parsed_url = urlparse(url)
if "youtube.com" in parsed_url.netloc:
query_params = parse_qs(parsed_url.query)
return query_params.get('v', [None])[0]
elif "youtu.be" in parsed_url.netloc:
return parsed_url.path.strip("/")
return None
except Exception as e:
print(f"Error parsing URL: {e}")
return None
def get_video_duration(video_id):
"""Fetch the video duration."""
try:
youtube = googleapiclient.discovery.build("youtube", "v3", developerKey=youtube_api_key)
request = youtube.videos().list(part="contentDetails", id=video_id)
response = request.execute()
if response["items"]:
duration = response["items"][0]["contentDetails"]["duration"]
match = re.match(r'PT(?:(\d+)H)?(?:(\d+)M)?(?:(\d+)S)?', duration)
hours = int(match.group(1)) if match.group(1) else 0
minutes = int(match.group(2)) if match.group(2) else 0
seconds = int(match.group(3)) if match.group(3) else 0
return hours * 60 + minutes + seconds / 60
return None
except Exception as e:
print(f"Error fetching duration: {e}")
return None
def download_and_transcribe_with_whisper(youtube_url):
"""Download audio and transcribe using Whisper."""
try:
with tempfile.TemporaryDirectory() as temp_dir:
temp_audio_file = os.path.join(temp_dir, "audio.mp3")
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': temp_audio_file,
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([youtube_url])
audio = AudioSegment.from_file(temp_audio_file)
wav_file = os.path.join(temp_dir, "audio.wav")
audio.export(wav_file, format="wav")
model = whisper.load_model("large")
result = model.transcribe(wav_file)
return result['text']
except Exception as e:
print(f"Error during Whisper transcription: {e}")
return None
def get_transcript_from_youtube_api(video_id, video_length):
"""Fetch transcript using YouTubeTranscriptApi."""
try:
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
for transcript in transcript_list:
if not transcript.is_generated:
return " ".join(segment['text'] for segment in transcript.fetch())
if video_length > 15:
auto_transcript = transcript_list.find_generated_transcript(['en'])
return " ".join(segment['text'] for segment in auto_transcript.fetch())
return None
except Exception as e:
print(f"Error fetching transcript: {e}")
return None
def get_transcript(youtube_url):
"""Fetch transcript or use Whisper fallback."""
video_id = extract_video_id(youtube_url)
if not video_id:
return "Invalid or unsupported YouTube URL."
video_length = get_video_duration(video_id)
if video_length:
transcript = get_transcript_from_youtube_api(video_id, video_length)
return transcript if transcript else download_and_transcribe_with_whisper(youtube_url)
return "Error fetching video details."
def summarize_text(text):
"""Summarize text using Hugging Face's BART model."""
try:
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if torch.cuda.is_available() else -1)
max_input_length = 1024
chunk_overlap = 100
text_chunks = [
text[i:i + max_input_length]
for i in range(0, len(text), max_input_length - chunk_overlap)
]
summaries = [
summarizer(chunk, max_length=100, min_length=50, do_sample=False)[0]['summary_text']
for chunk in text_chunks
]
return " ".join(summaries)
except Exception as e:
print(f"Error during summarization: {e}")
return None
def generate_optimized_content(summarized_text):
"""Generate optimized video metadata using GPT."""
prompt = f"""
Analyze the following summarized YouTube video transcript and:
1. Extract the top 10 keywords.
2. Generate an optimized title (less than 65 characters).
3. Create an engaging description.
4. Generate related tags for the video.
Summarized Transcript:
{summarized_text}
Provide the results in the following JSON format:
{{
"keywords": ["keyword1", "keyword2", ..., "keyword10"],
"title": "Generated Title",
"description": "Generated Description",
"tags": ["tag1", "tag2", ..., "tag10"]
}}
"""
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are an SEO expert."},
{"role": "user", "content": prompt}
]
)
return json.loads(response['choices'][0]['message']['content'])
except Exception as e:
print(f"Error generating metadata: {e}")
return {"error": "Unable to generate metadata."}
# Main Gradio Interface
def process_video(youtube_url):
"""Complete video processing workflow."""
transcript = get_transcript(youtube_url)
if not transcript:
return {"error": "Could not fetch the transcript. Please try another video."}
summary = summarize_text(transcript)
optimized_content = generate_optimized_content(summary)
return optimized_content
iface = gr.Interface(
fn=process_video,
inputs=gr.Textbox(label="Enter YouTube URL"),
outputs=gr.JSON(label="Optimized Metadata"),
title="YouTube Video SEO Optimizer",
description="Paste a YouTube URL to generate an SEO-friendly title, description, tags, and keywords."
)
if __name__ == "__main__":
iface.launch() |