metadata
title: Smol VLM 256m Instruct Docker
emoji: π
colorFrom: purple
colorTo: yellow
sdk: docker
pinned: false
short_description: Api endpoint for SMOL VLM 256M
π§ SmolVLM-256M: Vision + Language Inference API
This Space demonstrates how to deploy and serve the SmolVLM-256M-Instruct multimodal language model using a Docker-based backend. The API provides OpenAI-style chat/completions
endpoints for image + text understanding β similar to how ChatGPT Vision works.
Example frontend app could be found here: https://text-rec-api.glitch.me/
π Docker Setup
This Space uses a custom Dockerfile that downloads and launches the SmolVLM model with vision support using llama.cpp.
Dockerfile
FROM ghcr.io/ggml-org/llama.cpp:full
# Install wget
RUN apt update && apt install wget -y
# Download the GGUF model file
RUN wget "https://huggingface.co/ggml-org/SmolVLM-256M-Instruct-GGUF/resolve/main/SmolVLM-256M-Instruct-Q8_0.gguf" -O /smoll.gguf
# Download the mmproj (multimodal projection) file
RUN wget "https://huggingface.co/ggml-org/SmolVLM-256M-Instruct-GGUF/resolve/main/mmproj-SmolVLM-256M-Instruct-Q8_0.gguf" -O /mmproj.gguf
# Run the server on port 7860 with moderate generation settings
CMD [ "--server", "-m", "/smoll.gguf", "--mmproj", "/mmproj.gguf", "--port", "7860", "--host", "0.0.0.0", "-n", "512", "-t", "2" ]
π§ API Usage
The server exposes a POST /v1/chat/completions
endpoint compatible with the OpenAI API format.
π Request Format
Send a JSON payload structured like this:
{
"model": "SmolVLM-256M-Instruct",
"messages": [
{
"role": "user",
"content": [
{ "type": "text", "text": "What is in this image?" },
{
"type": "image_url",
"image_url": {
"url": "..."
}
}
]
}
]
}