Spaces:
Running
Running
File size: 29,315 Bytes
402ee99 2c0c571 402ee99 6a5bbc8 402ee99 6a5bbc8 402ee99 2c0c571 402ee99 2c0c571 402ee99 2c0c571 402ee99 2c0c571 6a5bbc8 2c0c571 6a5bbc8 402ee99 6a5bbc8 402ee99 6a5bbc8 402ee99 6a5bbc8 402ee99 6a5bbc8 402ee99 6a5bbc8 402ee99 6a5bbc8 402ee99 6a5bbc8 402ee99 6a5bbc8 402ee99 6a5bbc8 402ee99 6a5bbc8 402ee99 a6a8ad8 7678cbc a6a8ad8 402ee99 6a5bbc8 a6a8ad8 402ee99 a6a8ad8 402ee99 a6a8ad8 402ee99 6a5bbc8 a6a8ad8 6a5bbc8 a6a8ad8 6a5bbc8 a6a8ad8 6a5bbc8 402ee99 a6a8ad8 402ee99 2c0c571 6a5bbc8 a6a8ad8 6a5bbc8 a6a8ad8 6a5bbc8 a6a8ad8 6a5bbc8 2c0c571 6a5bbc8 2c0c571 a6a8ad8 402ee99 a6a8ad8 402ee99 a6a8ad8 402ee99 6a5bbc8 402ee99 6a5bbc8 2c0c571 6a5bbc8 402ee99 2c0c571 402ee99 6a5bbc8 402ee99 6a5bbc8 402ee99 2c0c571 6a5bbc8 2c0c571 6a5bbc8 402ee99 6a5bbc8 a6a8ad8 6a5bbc8 a6a8ad8 402ee99 a6a8ad8 402ee99 a6a8ad8 402ee99 a6a8ad8 402ee99 a6a8ad8 2c0c571 a6a8ad8 6a5bbc8 402ee99 a6a8ad8 402ee99 6a5bbc8 402ee99 6a5bbc8 402ee99 a6a8ad8 402ee99 5fd0efc 402ee99 5fd0efc 402ee99 2c0c571 402ee99 6a5bbc8 5fd0efc 2c0c571 6a5bbc8 402ee99 2c0c571 5fd0efc 2c0c571 5fd0efc 402ee99 2c0c571 6a5bbc8 2c0c571 6a5bbc8 2c0c571 6a5bbc8 2c0c571 6a5bbc8 2c0c571 6a5bbc8 2c0c571 6a5bbc8 2c0c571 6a5bbc8 2c0c571 6a5bbc8 a6a8ad8 2c0c571 402ee99 6a5bbc8 402ee99 2c0c571 6a5bbc8 2c0c571 6a5bbc8 2c0c571 6a5bbc8 2c0c571 402ee99 5fd0efc 402ee99 5fd0efc 402ee99 5fd0efc 402ee99 5fd0efc 402ee99 5fd0efc 402ee99 5fd0efc 402ee99 5fd0efc 402ee99 5fd0efc 402ee99 5fd0efc 402ee99 5fd0efc 6a5bbc8 402ee99 5fd0efc 6a5bbc8 5fd0efc 402ee99 5fd0efc 402ee99 5fd0efc 402ee99 5fd0efc 402ee99 5fd0efc 402ee99 5fd0efc 402ee99 5fd0efc 402ee99 5fd0efc 402ee99 5fd0efc 402ee99 5fd0efc 402ee99 5fd0efc 402ee99 5fd0efc 2c0c571 5fd0efc 402ee99 6a5bbc8 402ee99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 |
import gradio as gr
import os
import torch
import requests
import re
import time
import json
from transformers import AutoModelForCausalLM, AutoTokenizer
from bs4 import BeautifulSoup
import urllib.parse
from markdown import markdown
# Set environment variables
os.environ["TOKENIZERS_PARALLELISM"] = "false"
print("Loading model... Please wait...")
# Load the model with proper error handling
try:
# Try with Phi-2
MODEL_ID = "microsoft/phi-2"
tokenizer = AutoTokenizer.from_pretrained(
MODEL_ID,
trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
print("Successfully loaded Phi-2 model")
except Exception as e:
print(f"Error loading Phi-2: {e}")
print("Trying fallback model...")
try:
# Fallback to FLAN-T5-base
MODEL_ID = "google/flan-t5-base"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
from transformers import T5ForConditionalGeneration
model = T5ForConditionalGeneration.from_pretrained(
MODEL_ID,
torch_dtype=torch.float16,
device_map="auto"
)
print("Successfully loaded fallback model")
except Exception as e:
print(f"Error loading fallback model: {e}")
print("Operating in reduced functionality mode")
def search_web(query, max_results=5):
"""Perform real web searches using multiple search endpoints"""
results = []
# Try multiple search methods for reliability
# Method 1: Wikipedia API
try:
wiki_url = f"https://en.wikipedia.org/w/api.php?action=opensearch&search={urllib.parse.quote(query)}&limit={max_results}&namespace=0&format=json"
response = requests.get(wiki_url, timeout=5)
if response.status_code == 200:
data = response.json()
titles = data[1]
urls = data[3]
for i in range(min(len(titles), len(urls))):
# Get summary for each page
page_url = f"https://en.wikipedia.org/w/api.php?action=query&prop=extracts&exintro&explaintext&titles={urllib.parse.quote(titles[i])}&format=json"
page_response = requests.get(page_url, timeout=5)
if page_response.status_code == 200:
page_data = page_response.json()
try:
page_id = next(iter(page_data['query']['pages'].keys()))
if page_id != "-1":
extract = page_data['query']['pages'][page_id].get('extract', '')
snippet = extract[:200] + "..." if len(extract) > 200 else extract
results.append({
'title': f"Wikipedia - {titles[i]}",
'url': urls[i],
'snippet': snippet
})
except Exception as e:
print(f"Error extracting wiki data: {e}")
continue
except Exception as e:
print(f"Wikipedia search error: {e}")
# Method 2: Public Search API (SerpAPI demo)
if len(results) < max_results:
try:
serpapi_url = f"https://serpapi.com/search.json?engine=google&q={urllib.parse.quote(query)}&api_key=demo"
response = requests.get(serpapi_url, timeout=5)
if response.status_code == 200:
data = response.json()
if "organic_results" in data:
for result in data["organic_results"][:max_results - len(results)]:
results.append({
'title': result.get('title', ''),
'url': result.get('link', ''),
'snippet': result.get('snippet', '')
})
except Exception as e:
print(f"SerpAPI error: {e}")
# Method 3: Direct web scraping (as last resort)
if len(results) < max_results:
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
url = f"https://www.bing.com/search?q={urllib.parse.quote(query)}"
response = requests.get(url, headers=headers, timeout=10)
if response.status_code == 200:
soup = BeautifulSoup(response.text, 'html.parser')
search_results = soup.find_all('li', class_='b_algo')
for result in search_results[:max_results - len(results)]:
title_elem = result.find('h2')
if title_elem and title_elem.find('a'):
title = title_elem.text
url = title_elem.find('a')['href']
snippet_elem = result.find('div', class_='b_caption')
snippet = snippet_elem.find('p').text if snippet_elem and snippet_elem.find('p') else ""
results.append({
'title': title,
'url': url,
'snippet': snippet
})
except Exception as e:
print(f"Web scraping error: {e}")
# If we still don't have results, create minimal placeholder results
# This ensures the UI doesn't break if all search methods fail
if not results:
results = [
{
'title': f"Search: {query}",
'url': f"https://www.google.com/search?q={urllib.parse.quote(query)}",
'snippet': "Search engine results for your query."
}
]
return results[:max_results]
def generate_response(prompt, max_new_tokens=256):
"""Generate response using the AI model with robust fallbacks"""
# Check if model is loaded properly
if 'model' not in globals() or model is None:
print("Model not available for generation")
response = f"Based on the search results for '{query}', I can provide the following information:\n\n"
# Extract key information from search results
for i, result in enumerate(search_results[:3], 1):
# Add a section for each source with actual content
title = result['title'].replace("Wikipedia - ", "")
content = result['snippet']
response += f"**{title}**: {content} [{i}]\n\n"
# Add a conclusion
response += f"These sources provide information about {query} from different perspectives. For more detailed information, you can explore the full sources listed below."
return response
try:
# For T5 models
if "t5" in MODEL_ID.lower():
# Simplify prompt for T5
simple_prompt = prompt
if len(simple_prompt) > 512:
# Truncate to essential parts for T5
parts = prompt.split("\n\n")
query_part = next((p for p in parts if p.startswith("Query:")), "")
instruction_part = parts[-1] if parts else ""
simple_prompt = f"{query_part}\n\n{instruction_part}"
inputs = tokenizer(simple_prompt, return_tensors="pt", truncation=True, max_length=512).to(model.device)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_new_tokens=max_new_tokens,
temperature=0.8,
do_sample=True,
top_k=50,
repetition_penalty=1.2
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# If response is too short, try again with different parameters
if len(response) < 50:
outputs = model.generate(
inputs.input_ids,
max_new_tokens=max_new_tokens,
num_beams=4,
temperature=1.0,
do_sample=False
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# For Phi and other models
else:
# Extract just the query from the prompt for simpler generation
query = ""
search_results_text = ""
if "Query:" in prompt:
query_section = prompt.split("Query:")[1].split("\n")[0].strip()
query = query_section
elif "question:" in prompt.lower():
query_section = prompt.split("question:")[1].split("\n")[0].strip()
query = query_section
else:
# Try to extract from the beginning of the prompt
query = prompt.split("\n")[0].strip()
if "Search Results:" in prompt:
search_results_text = prompt.split("Search Results:")[1].split("Based on")[0].strip()
# Create a simpler prompt format for better results
simple_prompt = f"Answer this question based on these search results:\n\nQuestion: {query}\n\nSearch Results: {search_results_text[:500]}...\n\nAnswer:"
# Adjust format based on model
if "phi" in MODEL_ID.lower():
formatted_prompt = f"Instruct: {simple_prompt}\nOutput:"
else:
formatted_prompt = simple_prompt
inputs = tokenizer(formatted_prompt, return_tensors="pt", truncation=True, max_length=512).to(model.device)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_new_tokens=max_new_tokens,
temperature=0.85,
top_p=0.92,
top_k=50,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0][inputs.input_ids.size(1):], skip_special_tokens=True).strip()
# Check if response is empty or too short
if not response or len(response) < 20:
print("First generation attempt failed, trying alternative method")
# Try with different parameters
outputs = model.generate(
inputs.input_ids,
max_new_tokens=max_new_tokens,
num_beams=3, # Use beam search
temperature=1.0,
do_sample=False, # Deterministic generation
repetition_penalty=1.2,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0][inputs.input_ids.size(1):], skip_special_tokens=True).strip()
# If still no good response, use a minimal reliable response
if not response or len(response) < 20:
print("Second generation attempt failed, using fallback response")
# Create a simple response that's guaranteed to work
if query:
base_response = f"Based on the search results, I can provide information about {query}. "
base_response += "The sources contain relevant details about this topic. "
base_response += "You can refer to them for more in-depth information."
return base_response
else:
return "Based on the search results, I can provide information related to your query. Please check the sources for more details."
return response
except Exception as e:
print(f"Error in generate_response: {e}")
# Return a guaranteed fallback response
return "Based on the search results, I found information related to your query. The sources listed below contain more detailed information about this topic."
def parse_related_topics(text, query):
"""Extract related topics from generated text with better fallbacks"""
topics = []
# Parse lines and clean them up
lines = text.split('\n')
for line in lines:
# Clean up line from numbers and symbols
clean_line = re.sub(r'^[\d\-\*\β’\.\s]+', '', line.strip())
if clean_line and len(clean_line) > 10:
# Make sure it ends with a question mark if it seems like a question
if any(q in clean_line.lower() for q in ['what', 'how', 'why', 'when', 'where', 'who']) and not clean_line.endswith('?'):
clean_line += '?'
topics.append(clean_line)
# If we don't have enough topics, generate some based on the query
if len(topics) < 3:
base_queries = [
f"What is the history of {query}?",
f"How does {query} work?",
f"What are the latest developments in {query}?",
f"What are common applications of {query}?",
f"How is {query} used today?"
]
# Add base queries until we have at least 3
for bq in base_queries:
if len(topics) >= 3:
break
if not any(bq.lower() in t.lower() for t in topics):
topics.append(bq)
return topics[:3] # Return top 3 topics
def ensure_citations(text, search_results):
"""Ensure citations are properly added to the text"""
# If text is too short, return a generic message
if not text or len(text.strip()) < 10:
return "I couldn't generate a proper response for this query. Please try a different search term."
# Add citations if not present
if not re.search(r'\[\d+\]', text):
# Try to find snippets in the answer
for i, result in enumerate(search_results, 1):
key_phrases = result['snippet'].split('.')
for phrase in key_phrases:
if phrase and len(phrase) > 15 and phrase.strip() in text:
text = text.replace(phrase, f"{phrase} [{i}]", 1)
# If still no citations, add a generic one at the end
if not re.search(r'\[\d+\]', text):
text += f" [{1}]"
return text
def process_query(query):
"""Main function to process a query with robust response generation"""
try:
# Step 1: Search the web for real results
search_results = search_web(query, max_results=5)
# Step 2: Create context from search results - shorter and more focused
context = f"Query: {query}\n\n"
context += "Search Results Summary:\n\n"
for i, result in enumerate(search_results, 1):
# Use shorter context to avoid token limits
context += f"Source {i}: {result['title']}\n"
context += f"Content: {result['snippet'][:150]}\n\n"
# Step 3: Create a simpler prompt for the AI model
prompt = f"""Answer this question based on the search results: {query}
{context}
Provide a clear answer using information from these sources. Include citations like [1], [2] to reference sources."""
# Step 4: Generate answer using the improved generation function
answer = generate_response(prompt, max_new_tokens=384)
# Step 5: Ensure we have some answer content
if not answer or len(answer.strip()) < 30:
print("Fallback to generic response")
answer = f"Based on the search results for '{query}', I found relevant information in the sources listed below. They provide details about this topic that you may find useful."
# Step 6: Ensure citations
answer = ensure_citations(answer, search_results)
# Step 7: Generate related topics
# Use a simpler approach to get related topics since this might be failing too
try:
related_prompt = f"Generate 3 questions related to: {query}"
related_raw = generate_response(related_prompt, max_new_tokens=150)
related_topics = parse_related_topics(related_raw, query)
except Exception as e:
print(f"Error generating related topics: {e}")
# Fallback topics
related_topics = [
f"What is the history of {query}?",
f"How does {query} work?",
f"What are applications of {query}?"
]
# Return the complete result
return {
"answer": answer,
"sources": search_results,
"related_topics": related_topics
}
except Exception as e:
print(f"Error in process_query: {e}")
# Return a minimal result that won't break the UI
return {
"answer": f"I found information about '{query}' in the sources below. They provide details about this topic that may be helpful.",
"sources": search_results if 'search_results' in locals() else search_web(query, max_results=2),
"related_topics": [f"What is {query}?", f"History of {query}", f"How to use {query}"]
}
def format_sources(sources):
"""Format sources for display"""
if not sources:
return ""
html = ""
for i, source in enumerate(sources, 1):
html += f"""
<div style="margin-bottom: 15px; padding: 15px; background-color: #FFFFFF;
border-radius: 12px; border-left: 4px solid #2563EB; box-shadow: 0 2px 6px rgba(0,0,0,0.08);">
<a href="{source['url']}" target="_blank" style="font-weight: 600;
color: #2563EB; text-decoration: none; font-size: 16px;">
{source['title']}
</a>
<div style="color: #64748B; font-size: 14px; margin-top: 6px;">{source['url']}</div>
<div style="margin-top: 10px; color: #374151; line-height: 1.5;">{source['snippet']}</div>
</div>
"""
return html
def format_related(topics):
"""Format related topics for display with reliable click handlers"""
if not topics:
return ""
# Create HTML with unique IDs for each topic
html = "<div style='display: flex; flex-wrap: wrap; gap: 10px; margin-top: 15px;'>"
for i, topic in enumerate(topics):
# Each topic is a button with a unique ID
html += f"""
<div id="topic-{i}" style="background-color: #EFF6FF; padding: 10px 16px; border-radius: 100px;
color: #2563EB; font-size: 14px; font-weight: 500; cursor: pointer; display: inline-block;
transition: all 0.2s ease; border: 1px solid #DBEAFE; box-shadow: 0 1px 2px rgba(0,0,0,0.05);"
data-topic="{topic}"
onmouseover="this.style.backgroundColor='#DBEAFE'; this.style.boxShadow='0 2px 5px rgba(0,0,0,0.1)';"
onmouseout="this.style.backgroundColor='#EFF6FF'; this.style.boxShadow='0 1px 2px rgba(0,0,0,0.05)';">
{topic}
</div>
"""
html += "</div>"
# Add JavaScript to handle topic clicks
html += """
<script>
// Set up event listeners for topic clicks
function setupTopicClicks() {
// Find all topic elements
const topics = document.querySelectorAll('[id^="topic-"]');
// Add click listeners to each topic
topics.forEach(topic => {
topic.addEventListener('click', function() {
// Get the topic text
const topicText = this.getAttribute('data-topic');
console.log("Clicked topic:", topicText);
// Set input value to the topic text
const inputElement = document.getElementById('query-input');
if (inputElement) {
inputElement.value = topicText;
// Try multiple methods to trigger the search
// Method 1: Click the search button
const searchButton = document.querySelector('button[data-testid="submit"]');
if (searchButton) {
searchButton.click();
return;
}
// Method 2: Try other button selectors
const altButton = document.querySelector('button[aria-label="Submit"]') ||
document.querySelector('button:contains("Search")');
if (altButton) {
altButton.click();
return;
}
// Method 3: Find button by text content
const buttons = Array.from(document.querySelectorAll('button'));
const searchBtn = buttons.find(btn =>
btn.textContent.includes('Search') ||
btn.innerHTML.includes('Search')
);
if (searchBtn) {
searchBtn.click();
return;
}
// Method 4: Trigger form submission directly
const form = inputElement.closest('form');
if (form) {
const event = new Event('submit', { bubbles: true });
form.dispatchEvent(event);
return;
}
console.log("Could not find a way to trigger search");
}
});
});
}
// Run the setup function
setupTopicClicks();
// Set up an observer to handle dynamically loaded topics
const observer = new MutationObserver(function(mutations) {
mutations.forEach(function(mutation) {
if (mutation.addedNodes.length) {
setupTopicClicks();
}
});
});
// Start observing the document
observer.observe(document.body, { childList: true, subtree: true });
// jQuery-like helper function
if (!Element.prototype.contains) {
Element.prototype.contains = function(text) {
return this.innerText.includes(text);
};
}
</script>
"""
return html
def search_interface(query):
"""Main function for the Gradio interface with progress updates"""
if not query.strip():
return (
"Please enter a search query.",
"",
""
)
start_time = time.time()
try:
# Show loading message while processing
yield ("Searching and generating response...", "", "")
# Process the query
result = process_query(query)
# Format answer with markdown
answer_html = markdown(result["answer"])
# Format sources
sources_html = format_sources(result["sources"])
# Format related topics
related_html = format_related(result["related_topics"])
# Calculate processing time
processing_time = time.time() - start_time
print(f"Query processed in {processing_time:.2f} seconds")
yield (
answer_html,
sources_html,
related_html
)
except Exception as e:
print(f"Error in search_interface: {e}")
# Return a fallback response
yield (
"I encountered an issue while processing your query. Please try again with a different search term.",
"",
""
)
# Create the Gradio interface with modern UI
css = """
/* Global styles */
body {
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, sans-serif;
background-color: #F9FAFB;
color: #1F2937;
line-height: 1.6;
}
/* Container styling */
.container {
max-width: 1200px;
margin: 0 auto;
padding: 0 20px;
}
/* Header styling */
.header {
text-align: center;
margin-bottom: 2rem;
}
/* Search box styling */
#search-container input {
border: 1px solid #E5E7EB;
border-radius: 12px;
padding: 12px 20px;
font-size: 16px;
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
transition: all 0.2s ease;
}
#search-container input:focus {
border-color: #2563EB;
box-shadow: 0 0 0 3px rgba(37, 99, 235, 0.2);
outline: none;
}
/* Button styling */
button[data-testid="submit"] {
background-color: #2563EB !important;
color: white !important;
font-weight: 600 !important;
border-radius: 12px !important;
padding: 12px 24px !important;
border: none !important;
cursor: pointer !important;
transition: all 0.2s ease !important;
box-shadow: 0 2px 5px rgba(37, 99, 235, 0.3) !important;
}
button[data-testid="submit"]:hover {
background-color: #1D4ED8 !important;
box-shadow: 0 4px 8px rgba(37, 99, 235, 0.4) !important;
transform: translateY(-1px) !important;
}
/* Section headers */
h3 {
color: #2563EB;
font-weight: 600;
margin-top: 2rem;
margin-bottom: 1rem;
font-size: 1.25rem;
border-bottom: 2px solid #DBEAFE;
padding-bottom: 0.5rem;
}
/* Answer box styling */
.answer {
background-color: #FFFFFF;
padding: 24px;
border-radius: 12px;
box-shadow: 0 2px 6px rgba(0,0,0,0.05);
border: 1px solid #E5E7EB;
line-height: 1.7;
margin-bottom: 1.5rem;
color: #374151;
min-height: 100px;
}
.answer p {
margin-bottom: 1rem;
color: #1F2937;
}
.answer ul, .answer ol {
margin-left: 1.5rem;
margin-bottom: 1rem;
}
.answer strong, .answer b {
color: #111827;
font-weight: 600;
}
.answer a {
color: #2563EB;
text-decoration: none;
border-bottom: 1px solid currentColor;
}
/* Loading state */
.answer.loading {
display: flex;
align-items: center;
justify-content: center;
}
/* Footer styling */
footer {
margin-top: 2rem;
text-align: center;
color: #6B7280;
font-size: 0.875rem;
padding: 1rem 0;
}
/* Responsive styles */
@media (max-width: 768px) {
.answer {
padding: 16px;
}
button[data-testid="submit"] {
padding: 10px 16px !important;
}
}
"""
with gr.Blocks(css=css, theme=gr.themes.Default()) as demo:
# Custom header with professional design
gr.HTML("""
<div class="header">
<h1 style="color: #2563EB; font-size: 2.2rem; font-weight: 700; margin-bottom: 0.5rem;">π AI Search System</h1>
<p style="color: #64748B; font-size: 1.1rem; max-width: 600px; margin: 0 auto;">
Get comprehensive answers with real sources for any question.
</p>
</div>
""")
# Search container with improved styling
with gr.Row(elem_id="search-container"):
query_input = gr.Textbox(
label="Search Query",
placeholder="What would you like to know?",
elem_id="query-input",
scale=4
)
search_button = gr.Button("Search π", variant="primary", scale=1)
# Results container with improved layout
with gr.Row():
# Left column for answer and related topics
with gr.Column(scale=2):
# Answer section with better styling
gr.HTML("<h3>π Answer</h3>")
answer_output = gr.HTML(elem_classes=["answer"])
# Related topics with better styling
gr.HTML("<h3>π Related Topics</h3>")
related_output = gr.HTML()
# Right column for sources
with gr.Column(scale=1):
gr.HTML("<h3>π Sources</h3>")
sources_output = gr.HTML()
# Set up event handlers with progress indicators
search_button.click(
fn=search_interface,
inputs=[query_input],
outputs=[answer_output, sources_output, related_output]
)
query_input.submit(
fn=search_interface,
inputs=[query_input],
outputs=[answer_output, sources_output, related_output]
)
# Footer with attribution
gr.HTML("""
<footer>
<p>Built with Hugging Face Spaces</p>
</footer>
""")
# Launch app with queue for better performance
demo.queue(max_size=10)
demo.launch() |