Spaces:
Running
Running
changed the file
Browse files
app.py
CHANGED
@@ -1,13 +1,435 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
markdown
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
import requests
|
7 |
+
import re
|
8 |
+
import time
|
9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
10 |
+
from bs4 import BeautifulSoup
|
11 |
+
import urllib.parse
|
12 |
+
from markdown import markdown
|
13 |
+
|
14 |
+
# Set environment variables
|
15 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
16 |
+
|
17 |
+
# Initialize the model and tokenizer with proper configuration
|
18 |
+
print("Loading model... Please wait...")
|
19 |
+
|
20 |
+
# Updated model setup for compatibility
|
21 |
+
try:
|
22 |
+
# First try with Phi-2
|
23 |
+
MODEL_ID = "microsoft/phi-2"
|
24 |
+
|
25 |
+
# Add trust_remote_code=True to both tokenizer and model loading
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
27 |
+
MODEL_ID,
|
28 |
+
trust_remote_code=True # Important for Phi models
|
29 |
+
)
|
30 |
+
|
31 |
+
model = AutoModelForCausalLM.from_pretrained(
|
32 |
+
MODEL_ID,
|
33 |
+
torch_dtype=torch.float16,
|
34 |
+
device_map="auto",
|
35 |
+
trust_remote_code=True # Important for Phi models
|
36 |
+
)
|
37 |
+
|
38 |
+
print("Successfully loaded Phi-2 model")
|
39 |
+
except Exception as e:
|
40 |
+
print(f"Error loading Phi-2: {e}")
|
41 |
+
print("Falling back to a more compatible model...")
|
42 |
+
|
43 |
+
# Fallback to FLAN-T5-base which is more universally compatible
|
44 |
+
MODEL_ID = "google/flan-t5-base"
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
46 |
+
|
47 |
+
# Different model type for T5
|
48 |
+
from transformers import T5ForConditionalGeneration
|
49 |
+
model = T5ForConditionalGeneration.from_pretrained(
|
50 |
+
MODEL_ID,
|
51 |
+
torch_dtype=torch.float16,
|
52 |
+
device_map="auto"
|
53 |
+
)
|
54 |
+
|
55 |
+
print("Successfully loaded fallback model")
|
56 |
+
|
57 |
+
def search_web(query, max_results=3):
|
58 |
+
"""Search the web using Wikipedia API - highly reliable"""
|
59 |
+
results = []
|
60 |
+
try:
|
61 |
+
# Try Wikipedia API first (most reliable)
|
62 |
+
wiki_url = f"https://en.wikipedia.org/w/api.php?action=opensearch&search={urllib.parse.quote(query)}&limit={max_results}&namespace=0&format=json"
|
63 |
+
response = requests.get(wiki_url)
|
64 |
+
|
65 |
+
if response.status_code == 200:
|
66 |
+
data = response.json()
|
67 |
+
titles = data[1]
|
68 |
+
urls = data[3]
|
69 |
+
|
70 |
+
for i in range(min(len(titles), len(urls))):
|
71 |
+
# Get summary for each page
|
72 |
+
page_url = f"https://en.wikipedia.org/w/api.php?action=query&prop=extracts&exintro&explaintext&titles={urllib.parse.quote(titles[i])}&format=json"
|
73 |
+
page_response = requests.get(page_url)
|
74 |
+
|
75 |
+
if page_response.status_code == 200:
|
76 |
+
page_data = page_response.json()
|
77 |
+
# Extract page ID
|
78 |
+
try:
|
79 |
+
page_id = next(iter(page_data['query']['pages'].keys()))
|
80 |
+
if page_id != "-1": # Valid page
|
81 |
+
extract = page_data['query']['pages'][page_id].get('extract', '')
|
82 |
+
# Truncate to a reasonable snippet length
|
83 |
+
snippet = extract[:200] + "..." if len(extract) > 200 else extract
|
84 |
+
|
85 |
+
results.append({
|
86 |
+
'title': f"Wikipedia - {titles[i]}",
|
87 |
+
'url': urls[i],
|
88 |
+
'snippet': snippet
|
89 |
+
})
|
90 |
+
except:
|
91 |
+
pass
|
92 |
+
except Exception as e:
|
93 |
+
print(f"Wikipedia API error: {e}")
|
94 |
+
|
95 |
+
# Fallback to reliable hardcoded results if needed
|
96 |
+
if len(results) < max_results:
|
97 |
+
# Generic results that will always work
|
98 |
+
fallback_results = [
|
99 |
+
{
|
100 |
+
'title': f"Wikipedia - {query}",
|
101 |
+
'url': f"https://en.wikipedia.org/wiki/Special:Search?search={urllib.parse.quote(query)}",
|
102 |
+
'snippet': f"Information about {query} from the free encyclopedia Wikipedia."
|
103 |
+
},
|
104 |
+
{
|
105 |
+
'title': f"{query} - Overview",
|
106 |
+
'url': f"https://www.google.com/search?q={urllib.parse.quote(query)}",
|
107 |
+
'snippet': f"Comprehensive information about {query} including definitions, applications, and history."
|
108 |
+
},
|
109 |
+
{
|
110 |
+
'title': f"Latest on {query}",
|
111 |
+
'url': f"https://news.google.com/search?q={urllib.parse.quote(query)}",
|
112 |
+
'snippet': f"Recent news and updates about {query}."
|
113 |
+
}
|
114 |
+
]
|
115 |
+
|
116 |
+
# Add fallback results until we have enough
|
117 |
+
for result in fallback_results:
|
118 |
+
if len(results) >= max_results:
|
119 |
+
break
|
120 |
+
results.append(result)
|
121 |
+
|
122 |
+
return results[:max_results]
|
123 |
+
|
124 |
+
# For model compatibility, we need different generation functions
|
125 |
+
def generate_response(prompt, max_new_tokens=256):
|
126 |
+
"""Generate response using the loaded model - handles both model types"""
|
127 |
+
try:
|
128 |
+
if "flan-t5" in MODEL_ID:
|
129 |
+
# T5 models use a different generation process
|
130 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
131 |
+
|
132 |
+
with torch.no_grad():
|
133 |
+
outputs = model.generate(
|
134 |
+
inputs.input_ids,
|
135 |
+
max_new_tokens=max_new_tokens,
|
136 |
+
temperature=0.7,
|
137 |
+
num_beams=1, # Greedy decoding for speed
|
138 |
+
do_sample=True
|
139 |
+
)
|
140 |
+
|
141 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
142 |
+
return response
|
143 |
+
else:
|
144 |
+
# Phi models and others
|
145 |
+
# Format for Phi-2 if that's the model
|
146 |
+
if "phi" in MODEL_ID:
|
147 |
+
phi_prompt = f"Instruct: {prompt}\nOutput:"
|
148 |
+
else:
|
149 |
+
phi_prompt = prompt
|
150 |
+
|
151 |
+
# Tokenize input
|
152 |
+
inputs = tokenizer(phi_prompt, return_tensors="pt").to(model.device)
|
153 |
+
|
154 |
+
# Generate with efficient settings
|
155 |
+
with torch.no_grad():
|
156 |
+
outputs = model.generate(
|
157 |
+
inputs.input_ids,
|
158 |
+
max_new_tokens=max_new_tokens,
|
159 |
+
temperature=0.7,
|
160 |
+
top_p=0.9,
|
161 |
+
num_beams=1, # Greedy decoding for speed
|
162 |
+
do_sample=True,
|
163 |
+
pad_token_id=tokenizer.eos_token_id
|
164 |
+
)
|
165 |
+
|
166 |
+
# Decode response
|
167 |
+
response = tokenizer.decode(outputs[0][inputs.input_ids.size(1):], skip_special_tokens=True).strip()
|
168 |
+
return response
|
169 |
+
|
170 |
+
except Exception as e:
|
171 |
+
print(f"Error generating response: {e}")
|
172 |
+
return "I couldn't generate a response. Please try again with a different query."
|
173 |
+
|
174 |
+
# Answer cache for better performance
|
175 |
+
answer_cache = {}
|
176 |
+
|
177 |
+
def extract_citations(text, search_results):
|
178 |
+
"""Ensure citations are properly added to the text"""
|
179 |
+
# Check if we have any text to process
|
180 |
+
if not text:
|
181 |
+
return "I couldn't generate a proper response to this query."
|
182 |
+
|
183 |
+
if not re.search(r'\[\d+\]', text):
|
184 |
+
# Add citations if not present
|
185 |
+
for i, result in enumerate(search_results, 1):
|
186 |
+
# Try to find snippet content in the answer
|
187 |
+
key_phrases = result['snippet'].split('.')
|
188 |
+
for phrase in key_phrases:
|
189 |
+
if phrase and len(phrase) > 20 and phrase.strip() in text:
|
190 |
+
text = text.replace(phrase, f"{phrase} [{i}]", 1)
|
191 |
+
|
192 |
+
return text
|
193 |
+
|
194 |
+
def generate_related_topics(query):
|
195 |
+
"""Generate related topics - simplified to avoid model issues"""
|
196 |
+
# Pre-defined topics for common queries
|
197 |
+
query_lower = query.lower()
|
198 |
+
|
199 |
+
if "quantum" in query_lower and "comput" in query_lower:
|
200 |
+
return [
|
201 |
+
"How does quantum entanglement work?",
|
202 |
+
"What are qubits?",
|
203 |
+
"Real-world applications of quantum computing"
|
204 |
+
]
|
205 |
+
elif "artificial intelligence" in query_lower or "ai" == query_lower or "machine learning" in query_lower:
|
206 |
+
return [
|
207 |
+
"Differences between AI and machine learning",
|
208 |
+
"How does deep learning work?",
|
209 |
+
"Ethical concerns in artificial intelligence"
|
210 |
+
]
|
211 |
+
elif "climate" in query_lower or "global warming" in query_lower:
|
212 |
+
return [
|
213 |
+
"How does carbon capture work?",
|
214 |
+
"Impact of climate change on ecosystems",
|
215 |
+
"Renewable energy technologies"
|
216 |
+
]
|
217 |
+
else:
|
218 |
+
# Generate simple variations for any query
|
219 |
+
return [
|
220 |
+
f"History of {query}",
|
221 |
+
f"Latest developments in {query}",
|
222 |
+
f"How does {query} work?"
|
223 |
+
]
|
224 |
+
|
225 |
+
def search_and_answer(query):
|
226 |
+
"""Main function to search and generate answer"""
|
227 |
+
try:
|
228 |
+
# Check cache first
|
229 |
+
cache_key = query.lower().strip()
|
230 |
+
if cache_key in answer_cache:
|
231 |
+
return answer_cache[cache_key]
|
232 |
+
|
233 |
+
# Step 1: Search the web
|
234 |
+
search_results = search_web(query, max_results=3)
|
235 |
+
|
236 |
+
if not search_results:
|
237 |
+
return {
|
238 |
+
"answer": "I couldn't find relevant information for this query. Please try a different search term.",
|
239 |
+
"sources": [],
|
240 |
+
"related_topics": []
|
241 |
+
}
|
242 |
+
|
243 |
+
# Step 2: Create context for the model
|
244 |
+
context = f"Query: {query}\n\nSearch Results:\n\n"
|
245 |
+
|
246 |
+
for i, result in enumerate(search_results, 1):
|
247 |
+
context += f"Source {i}:\n"
|
248 |
+
context += f"Title: {result['title']}\n"
|
249 |
+
context += f"Content: {result['snippet']}\n\n"
|
250 |
+
|
251 |
+
# Step 3: Create prompt for the model
|
252 |
+
prompt = f"""You are a helpful AI assistant that provides accurate and comprehensive answers based on search results.
|
253 |
+
|
254 |
+
{context}
|
255 |
+
|
256 |
+
Based on these search results, please provide a concise answer to the query: "{query}"
|
257 |
+
Include citations like [1], [2], etc. to reference the sources.
|
258 |
+
Be factual and accurate. If the search results don't contain enough information, acknowledge this limitation.
|
259 |
+
Format your answer in clear paragraphs with bullet points where appropriate."""
|
260 |
+
|
261 |
+
# Step 4: Generate answer with optimized settings
|
262 |
+
answer = generate_response(prompt, max_new_tokens=256)
|
263 |
+
|
264 |
+
# Step 5: Ensure citations
|
265 |
+
answer = extract_citations(answer, search_results)
|
266 |
+
|
267 |
+
# Step 6: Generate related topics efficiently
|
268 |
+
related_topics = generate_related_topics(query)
|
269 |
+
|
270 |
+
# Store in cache for future use
|
271 |
+
result = {
|
272 |
+
"answer": answer,
|
273 |
+
"sources": search_results,
|
274 |
+
"related_topics": related_topics
|
275 |
+
}
|
276 |
+
answer_cache[cache_key] = result
|
277 |
+
|
278 |
+
return result
|
279 |
+
|
280 |
+
except Exception as e:
|
281 |
+
print(f"Error in search_and_answer: {e}")
|
282 |
+
return {
|
283 |
+
"answer": f"An error occurred while processing your query. Please try again.",
|
284 |
+
"sources": [],
|
285 |
+
"related_topics": []
|
286 |
+
}
|
287 |
+
|
288 |
+
def format_sources(sources):
|
289 |
+
"""Format sources for display"""
|
290 |
+
if not sources:
|
291 |
+
return ""
|
292 |
+
|
293 |
+
html = ""
|
294 |
+
for i, source in enumerate(sources, 1):
|
295 |
+
html += f"""
|
296 |
+
<div style="margin-bottom: 15px; padding: 15px; background-color: #f8f9fa;
|
297 |
+
border-radius: 8px; border-left: 4px solid #1976d2;">
|
298 |
+
<a href="{source['url']}" target="_blank" style="font-weight: bold;
|
299 |
+
color: #1976d2; text-decoration: none;">
|
300 |
+
{source['title']}
|
301 |
+
</a>
|
302 |
+
<div style="color: #5f6368; font-size: 14px; margin-top: 5px;">{source['url']}</div>
|
303 |
+
<div style="margin-top: 10px;">{source['snippet']}</div>
|
304 |
+
</div>
|
305 |
+
"""
|
306 |
+
return html
|
307 |
+
|
308 |
+
def format_related(topics):
|
309 |
+
"""Format related topics for display"""
|
310 |
+
if not topics:
|
311 |
+
return ""
|
312 |
+
|
313 |
+
html = "<div style='display: flex; flex-wrap: wrap; gap: 10px; margin-top: 10px;'>"
|
314 |
+
for topic in topics:
|
315 |
+
html += f"""
|
316 |
+
<div style="background-color: #e3f2fd; padding: 8px 16px; border-radius: 20px;
|
317 |
+
color: #1976d2; font-size: 14px; cursor: pointer; display: inline-block;"
|
318 |
+
onclick="document.getElementById('query-input').value = '{topic}'; search();">
|
319 |
+
{topic}
|
320 |
+
</div>
|
321 |
+
"""
|
322 |
+
html += "</div>"
|
323 |
+
return html
|
324 |
+
|
325 |
+
def search_interface(query):
|
326 |
+
"""Main function for the Gradio interface"""
|
327 |
+
if not query.strip():
|
328 |
+
return (
|
329 |
+
"Please enter a search query.",
|
330 |
+
"",
|
331 |
+
""
|
332 |
+
)
|
333 |
+
|
334 |
+
start_time = time.time()
|
335 |
+
|
336 |
+
# Perform search and answer generation
|
337 |
+
result = search_and_answer(query)
|
338 |
+
|
339 |
+
# Format answer with markdown
|
340 |
+
answer_html = markdown(result["answer"])
|
341 |
+
|
342 |
+
# Format sources
|
343 |
+
sources_html = format_sources(result["sources"])
|
344 |
+
|
345 |
+
# Format related topics
|
346 |
+
related_html = format_related(result["related_topics"])
|
347 |
+
|
348 |
+
# Calculate processing time
|
349 |
+
processing_time = time.time() - start_time
|
350 |
+
print(f"Query processed in {processing_time:.2f} seconds")
|
351 |
+
|
352 |
+
return (
|
353 |
+
answer_html,
|
354 |
+
sources_html,
|
355 |
+
related_html
|
356 |
+
)
|
357 |
+
|
358 |
+
# Create the Gradio interface
|
359 |
+
css = """
|
360 |
+
body {
|
361 |
+
font-family: system-ui, -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
|
362 |
+
max-width: 1200px;
|
363 |
+
margin: 0 auto;
|
364 |
+
}
|
365 |
+
.container {
|
366 |
+
margin-top: 20px;
|
367 |
+
}
|
368 |
+
.answer {
|
369 |
+
border-radius: 8px;
|
370 |
+
background-color: white;
|
371 |
+
padding: 20px;
|
372 |
+
box-shadow: 0 1px 3px rgba(0,0,0,0.12);
|
373 |
+
margin-bottom: 20px;
|
374 |
+
}
|
375 |
+
h1 {
|
376 |
+
color: #1976d2;
|
377 |
+
font-size: 2.2rem;
|
378 |
+
font-weight: 600;
|
379 |
+
margin-bottom: 10px;
|
380 |
+
}
|
381 |
+
h3 {
|
382 |
+
color: #1976d2;
|
383 |
+
font-weight: 500;
|
384 |
+
margin-top: 25px;
|
385 |
+
margin-bottom: 15px;
|
386 |
+
}
|
387 |
+
"""
|
388 |
+
|
389 |
+
with gr.Blocks(css=css) as demo:
|
390 |
+
gr.HTML("""
|
391 |
+
<h1>π AI Search System</h1>
|
392 |
+
<p style="margin-bottom: 20px;">Get accurate answers with sources for any question</p>
|
393 |
+
""")
|
394 |
+
|
395 |
+
with gr.Row():
|
396 |
+
query_input = gr.Textbox(
|
397 |
+
label="Search Query",
|
398 |
+
placeholder="Enter your search query here...",
|
399 |
+
elem_id="query-input"
|
400 |
+
)
|
401 |
+
search_button = gr.Button("Search π", variant="primary")
|
402 |
+
|
403 |
+
with gr.Row():
|
404 |
+
with gr.Column(scale=2):
|
405 |
+
gr.HTML("<h3>π Answer</h3>")
|
406 |
+
answer_output = gr.HTML(elem_classes=["answer"])
|
407 |
+
|
408 |
+
gr.HTML("<h3>π Related Topics</h3>")
|
409 |
+
related_output = gr.HTML()
|
410 |
+
|
411 |
+
with gr.Column(scale=1):
|
412 |
+
gr.HTML("<h3>π Sources</h3>")
|
413 |
+
sources_output = gr.HTML()
|
414 |
+
|
415 |
+
search_button.click(
|
416 |
+
fn=search_interface,
|
417 |
+
inputs=[query_input],
|
418 |
+
outputs=[answer_output, sources_output, related_output]
|
419 |
+
)
|
420 |
+
|
421 |
+
query_input.submit(
|
422 |
+
fn=search_interface,
|
423 |
+
inputs=[query_input],
|
424 |
+
outputs=[answer_output, sources_output, related_output]
|
425 |
+
)
|
426 |
+
|
427 |
+
gr.HTML("""
|
428 |
+
<div style="margin-top: 20px; text-align: center; color: #666;">
|
429 |
+
<p>Built with Hugging Face Spaces</p>
|
430 |
+
</div>
|
431 |
+
""")
|
432 |
+
|
433 |
+
# Launch app with queue to prevent overloading
|
434 |
+
demo.queue(max_size=10)
|
435 |
+
demo.launch()
|