counting / maths /operations_research /BranchAndBoundSolver.py
spagestic's picture
Refactor Operations Research Interfaces and Add Utility Functions
79bc79a
import cvxpy as cp
import numpy as np
import math
from queue import PriorityQueue
import networkx as nx
import matplotlib.pyplot as plt
from tabulate import tabulate
from scipy.optimize import linprog
import gradio as gr
from maths.operations_research.utils import parse_matrix
from maths.operations_research.utils import parse_vector
class BranchAndBoundSolver:
def __init__(self, c, A, b, integer_vars=None, binary_vars=None, maximize=True):
"""
Initialize the Branch and Bound solver
Parameters:
- c: Objective coefficients (for max c'x)
- A, b: Constraints Ax <= b
- integer_vars: Indices of variables that must be integers
- binary_vars: Indices of variables that must be binary (0 or 1)
- maximize: True for maximization, False for minimization
Raises:
- ValueError: If input dimensions are inconsistent or invalid indices provided
- TypeError: If inputs are not numeric arrays
"""
# Input validation
if not hasattr(c, '__len__') or len(c) == 0:
raise ValueError("Objective coefficients 'c' must be a non-empty array-like object")
if not hasattr(A, 'shape') or A.size == 0:
raise ValueError("Constraint matrix 'A' must be a non-empty 2D array")
if not hasattr(b, '__len__') or len(b) == 0:
raise ValueError("Constraint bounds 'b' must be a non-empty array-like object")
# Convert inputs to numpy arrays for consistency
try:
self.c = np.asarray(c, dtype=float)
self.A = np.asarray(A, dtype=float)
self.b = np.asarray(b, dtype=float)
except (ValueError, TypeError) as e:
raise TypeError(f"All inputs must be convertible to numeric arrays: {e}")
# Validate dimensions
if self.A.ndim != 2:
raise ValueError(f"Constraint matrix 'A' must be 2D, got {self.A.ndim}D")
if self.c.ndim != 1:
raise ValueError(f"Objective coefficients 'c' must be 1D, got {self.c.ndim}D")
if self.b.ndim != 1:
raise ValueError(f"Constraint bounds 'b' must be 1D, got {self.b.ndim}D")
if self.A.shape[0] != len(self.b):
raise ValueError(f"Number of rows in A ({self.A.shape[0]}) must match length of b ({len(self.b)})")
if self.A.shape[1] != len(self.c):
raise ValueError(f"Number of columns in A ({self.A.shape[1]}) must match length of c ({len(self.c)})")
self.n = len(self.c)
# Process binary and integer variables with validation
self.binary_vars = [] if binary_vars is None else list(binary_vars)
# Validate binary variable indices
for idx in self.binary_vars:
if not isinstance(idx, (int, np.integer)) or idx < 0 or idx >= self.n:
raise ValueError(f"Binary variable index {idx} is invalid. Must be integer in range [0, {self.n-1}]")
# If integer_vars not specified, assume all non-binary variables are integers
if integer_vars is None:
self.integer_vars = list(range(self.n))
else:
self.integer_vars = list(integer_vars)
# Validate integer variable indices
for idx in self.integer_vars:
if not isinstance(idx, (int, np.integer)) or idx < 0 or idx >= self.n:
raise ValueError(f"Integer variable index {idx} is invalid. Must be integer in range [0, {self.n-1}]")
# Add binary variables to integer variables list if they're not already there
for idx in self.binary_vars:
if idx not in self.integer_vars:
self.integer_vars.append(idx)
# Best solution found so far
self.best_solution = None
self.best_objective = float('-inf') if maximize else float('inf')
self.maximize = maximize
# Track nodes explored
self.nodes_explored = 0
# Graph for visualization
self.graph = nx.DiGraph()
self.node_id = 0
# For tabular display of steps
self.steps_table = []
# Set of active nodes
self.active_nodes = set() # For logging messages
self.log_messages = []
def is_integer_feasible(self, x):
"""Check if the solution satisfies integer constraints
Args:
x: Solution vector to check
Returns:
bool: True if solution satisfies integer constraints, False otherwise
"""
if x is None:
return False
try:
for idx in self.integer_vars:
if idx >= len(x):
raise IndexError(f"Integer variable index {idx} exceeds solution vector length {len(x)}")
if abs(round(x[idx]) - x[idx]) > 1e-6:
return False
return True
except (IndexError, TypeError) as e:
self.log_messages.append(f"Error checking integer feasibility: {e}")
return False
def get_branching_variable(self, x):
"""Select most fractional variable to branch on
Args:
x: Solution vector
Returns:
int: Index of variable to branch on, or -1 if no fractional variables found
"""
if x is None:
return -1
max_fractional = -1
branching_var = -1
try:
for idx in self.integer_vars:
if idx >= len(x):
self.log_messages.append(f"Warning: Integer variable index {idx} exceeds solution vector length {len(x)}")
continue
fractional_part = abs(x[idx] - round(x[idx]))
if fractional_part > max_fractional and fractional_part > 1e-6:
max_fractional = fractional_part
branching_var = idx
except (IndexError, TypeError) as e:
self.log_messages.append(f"Error finding branching variable: {e}")
return -1
return branching_var
def solve_relaxation(self, lower_bounds, upper_bounds):
"""Solve the continuous relaxation with given bounds
Args:
lower_bounds: List of lower bounds for variables
upper_bounds: List of upper bounds for variables
Returns:
tuple: (solution_vector, objective_value) or (None, inf/-inf) if infeasible
"""
try:
# Validate bounds
if len(lower_bounds) != self.n or len(upper_bounds) != self.n:
raise ValueError(f"Bounds must have length {self.n}, got {len(lower_bounds)}, {len(upper_bounds)}")
x = cp.Variable(self.n)
# Set the objective - maximize c'x or minimize -c'x
if self.maximize:
objective = cp.Maximize(self.c @ x)
else:
objective = cp.Minimize(self.c @ x)
# Basic constraints Ax <= b
constraints = [self.A @ x <= self.b]
# Add bounds with validation
for i in range(self.n):
if lower_bounds[i] is not None:
if not np.isfinite(lower_bounds[i]):
raise ValueError(f"Lower bound for variable {i} must be finite, got {lower_bounds[i]}")
constraints.append(x[i] >= lower_bounds[i])
if upper_bounds[i] is not None:
if not np.isfinite(upper_bounds[i]):
raise ValueError(f"Upper bound for variable {i} must be finite, got {upper_bounds[i]}")
constraints.append(x[i] <= upper_bounds[i])
# Check for contradictory bounds
if (lower_bounds[i] is not None and upper_bounds[i] is not None and
lower_bounds[i] > upper_bounds[i]):
self.log_messages.append(f"Warning: Contradictory bounds for variable {i}: [{lower_bounds[i]}, {upper_bounds[i]}]")
prob = cp.Problem(objective, constraints)
# Solve with error handling
objective_value = prob.solve()
# Check solver status
if prob.status in ['infeasible', 'unbounded']:
self.log_messages.append(f"Relaxation problem status: {prob.status}")
return None, float('-inf') if self.maximize else float('inf')
elif prob.status != 'optimal':
self.log_messages.append(f"Relaxation solver warning: {prob.status}")
# Validate solution
if x.value is None:
return None, float('-inf') if self.maximize else float('inf')
# Check for numerical issues
if not np.isfinite(objective_value):
self.log_messages.append(f"Warning: Non-finite objective value: {objective_value}")
return None, float('-inf') if self.maximize else float('inf')
return x.value, objective_value
except cp.error.SolverError as e:
self.log_messages.append(f"CVXPY solver error: {e}")
return None, float('-inf') if self.maximize else float('inf')
except Exception as e:
self.log_messages.append(f"Unexpected error in solve_relaxation: {e}")
return None, float('-inf') if self.maximize else float('inf')
def add_node_to_graph(self, node_name, objective_value, x_value, parent=None, branch_var=None, branch_cond=None):
"""Add a node to the branch and bound graph
Args:
node_name: Unique identifier for the node
objective_value: Objective value at this node
x_value: Solution vector at this node
parent: Parent node name (for edges)
branch_var: Variable being branched on
branch_cond: Branching condition string
Returns:
str: The node name that was added
"""
try:
# Validate inputs
if not isinstance(node_name, str):
raise ValueError(f"Node name must be string, got {type(node_name)}")
if objective_value is not None and not np.isfinite(objective_value):
self.log_messages.append(f"Warning: Non-finite objective value for node {node_name}: {objective_value}")
self.graph.add_node(node_name, obj=objective_value, x=x_value,
branch_var=branch_var, branch_cond=branch_cond)
if parent is not None:
if parent not in self.graph.nodes:
self.log_messages.append(f"Warning: Parent node {parent} not found in graph")
else:
# Use branch_var + 1 to show 1-indexed variables in the display if branch_var is not None and branch_cond is not None:
label = f"x_{branch_var + 1} {branch_cond}"
self.graph.add_edge(parent, node_name, label=label)
return node_name
except Exception as e:
self.log_messages.append(f"Error adding node {node_name} to graph: {e}")
return node_name # Return the name even if there was an error
def visualize_graph(self):
"""Visualize the branch and bound graph
Returns:
matplotlib.figure.Figure: The graph visualization figure
"""
try:
if len(self.graph.nodes) == 0:
# Create empty plot if no nodes
fig = plt.figure(figsize=(10, 6))
plt.text(0.5, 0.5, 'No nodes to display', ha='center', va='center', transform=plt.gca().transAxes)
plt.title("Branch and Bound Tree (Empty)", fontsize=14)
plt.axis('off')
return fig
fig = plt.figure(figsize=(20, 8))
# Use hierarchical layout if possible, fall back to spring layout
try:
pos = nx.nx_agraph.graphviz_layout(self.graph, prog='dot')
except:
try:
pos = nx.spring_layout(self.graph, k=3, iterations=50)
except:
# Fallback to simple circular layout
pos = nx.circular_layout(self.graph)
# Node labels: Node name, Objective value and solution
labels = {}
for node, data in self.graph.nodes(data=True):
try:
if data.get('x') is not None and len(data['x']) > 0:
x_str = ', '.join([f"{x:.2f}" for x in data['x']])
obj_val = data.get('obj', 'N/A')
if isinstance(obj_val, (int, float)) and np.isfinite(obj_val):
labels[node] = f"{node}\n({obj_val:.2f}, ({x_str}))"
else:
labels[node] = f"{node}\n(N/A, ({x_str}))"
else:
labels[node] = f"{node}\nInfeasible"
except Exception as e:
labels[node] = f"{node}\nError: {str(e)[:20]}..."
# Edge labels: Branching conditions
edge_labels = nx.get_edge_attributes(self.graph, 'label')
# Draw components with error handling
try:
nx.draw_networkx_nodes(self.graph, pos, node_size=2000, node_color='skyblue')
except Exception as e:
self.log_messages.append(f"Warning: Could not draw nodes: {e}")
try:
nx.draw_networkx_edges(self.graph, pos, width=1.5, arrowsize=20, edge_color='gray')
except Exception as e:
self.log_messages.append(f"Warning: Could not draw edges: {e}")
try:
nx.draw_networkx_labels(self.graph, pos, labels, font_size=10, font_family='sans-serif')
except Exception as e:
self.log_messages.append(f"Warning: Could not draw node labels: {e}")
try:
nx.draw_networkx_edge_labels(self.graph, pos, edge_labels=edge_labels,
font_size=10, font_family='sans-serif')
except Exception as e:
self.log_messages.append(f"Warning: Could not draw edge labels: {e}")
plt.title("Branch and Bound Tree", fontsize=14)
plt.axis('off')
plt.tight_layout()
return fig
except Exception as e:
self.log_messages.append(f"Error creating graph visualization: {e}")
# Return a simple error plot
fig = plt.figure(figsize=(10, 6))
plt.text(0.5, 0.5, f'Error creating visualization:\n{str(e)}',
ha='center', va='center', transform=plt.gca().transAxes)
plt.title("Branch and Bound Tree (Error)", fontsize=14)
plt.axis('off')
return fig
def display_steps_table(self):
"""Display the steps in tabular format
Returns:
str: Formatted table string
"""
try:
if not self.steps_table:
return "No steps recorded."
headers = ["Node", "z", "x", "z*", "x*", "UB", "LB", "Z at end of stage"]
return tabulate(self.steps_table, headers=headers, tablefmt="grid")
except Exception as e:
self.log_messages.append(f"Error creating steps table: {e}")
return f"Error displaying steps table: {e}"
def solve(self, verbose=True, max_iterations=1000):
"""Solve the problem using branch and bound
Args:
verbose: Whether to log detailed information
max_iterations: Maximum number of iterations to prevent infinite loops
Returns:
tuple: (best_solution, best_objective, log_messages, visualization_figure)
"""
self.log_messages = [] # Initialize log for this run
try:
# Initialize bounds with validation
lower_bounds = [0.0] * self.n
upper_bounds = [None] * self.n # None means unbounded
# Set upper bounds for binary variables
for idx in self.binary_vars:
if idx < len(upper_bounds):
upper_bounds[idx] = 1.0
else:
raise IndexError(f"Binary variable index {idx} exceeds problem dimension {self.n}")
# Create a priority queue for nodes
node_queue = PriorityQueue()
iteration_count = 0
# Solve the root relaxation
self.log_messages.append("Step 1: Solving root relaxation (continuous problem)")
try:
x_root, obj_root = self.solve_relaxation(lower_bounds, upper_bounds)
except Exception as e:
self.log_messages.append(f"Error solving root relaxation: {e}")
fig = self.visualize_graph()
return None, float('-inf') if self.maximize else float('inf'), self.log_messages, fig
if x_root is None:
self.log_messages.append("Root problem infeasible")
fig = self.visualize_graph()
return None, float('-inf') if self.maximize else float('inf'), self.log_messages, fig
# Add root node to the graph
root_node = "S0"
self.add_node_to_graph(root_node, obj_root, x_root)
self.log_messages.append(f"Root relaxation objective: {obj_root:.6f}")
self.log_messages.append(f"Root solution: {x_root}")
# Initial upper bound is the root objective
upper_bound = obj_root
# Check if the root solution is already integer-feasible
if self.is_integer_feasible(x_root):
self.log_messages.append("Root solution is integer-feasible! No need for branching.")
self.best_solution = x_root.copy()
self.best_objective = obj_root
# Add to steps table
try:
active_nodes_str = "∅" if not self.active_nodes else "{" + ", ".join(self.active_nodes) + "}"
self.steps_table.append([
root_node, f"{obj_root:.2f}", f"({', '.join([f'{x:.2f}' for x in x_root])})",
f"{self.best_objective:.2f}", f"({', '.join([f'{x:.2f}' for x in self.best_solution])})",
f"{upper_bound:.2f}", f"{self.best_objective:.2f}", active_nodes_str
])
except Exception as e:
self.log_messages.append(f"Error updating steps table: {e}")
steps_table_string = self.display_steps_table()
self.log_messages.append(steps_table_string)
fig = self.visualize_graph()
return self.best_solution, self.best_objective, self.log_messages, fig
# Add root node to the queue and active nodes set
priority = -obj_root if self.maximize else obj_root
node_queue.put((priority, self.nodes_explored, root_node, lower_bounds.copy(), upper_bounds.copy()))
self.active_nodes.add(root_node)
# Add entry to steps table for root node
try:
active_nodes_str = "{" + ", ".join(self.active_nodes) + "}"
lb_str = "-" if self.best_objective == float('-inf') else f"{self.best_objective:.2f}"
x_star_str = "-" if self.best_solution is None else f"({', '.join([f'{x:.2f}' for x in self.best_solution])})"
self.steps_table.append([
root_node, f"{obj_root:.2f}", f"({', '.join([f'{x:.2f}' for x in x_root])})",
lb_str, x_star_str, f"{upper_bound:.2f}", lb_str, active_nodes_str
])
except Exception as e:
self.log_messages.append(f"Error updating initial steps table: {e}")
self.log_messages.append("\nStarting branch and bound process:")
node_counter = 1
while not node_queue.empty() and iteration_count < max_iterations:
iteration_count += 1
try:
# Get the node with the highest objective (for maximization)
priority, _, node_name, node_lower_bounds, node_upper_bounds = node_queue.get()
self.nodes_explored += 1
self.log_messages.append(f"\nStep {self.nodes_explored + 1}: Exploring node {node_name}")
# Remove from active nodes
if node_name in self.active_nodes:
self.active_nodes.remove(node_name)
# Branch on most fractional variable
if node_name not in self.graph.nodes:
self.log_messages.append(f"Warning: Node {node_name} not found in graph")
continue
current_solution = self.graph.nodes[node_name].get('x')
if current_solution is None:
self.log_messages.append(f"Warning: No solution found for node {node_name}")
continue
branch_var = self.get_branching_variable(current_solution)
if branch_var == -1:
self.log_messages.append(f"Warning: No branching variable found for node {node_name}")
continue
branch_val = current_solution[branch_var]
# Process branches with enhanced error handling
self._process_branches(node_name, branch_var, branch_val, node_lower_bounds,
node_upper_bounds, node_queue, node_counter)
node_counter += 2 # Two new nodes created
# Update upper bound
if not node_queue.empty():
next_priority = node_queue.queue[0][0]
upper_bound = -next_priority if self.maximize else next_priority
else:
upper_bound = self.best_objective
# Add to steps table
self._add_step_to_table(node_name, upper_bound)
except Exception as e:
self.log_messages.append(f"Error processing node {node_name if 'node_name' in locals() else 'unknown'}: {e}")
continue
# Check for max iterations exceeded
if iteration_count >= max_iterations:
self.log_messages.append(f"Warning: Maximum iterations ({max_iterations}) reached. Solution may not be optimal.")
self.log_messages.append("\nBranch and bound completed!")
self.log_messages.append(f"Nodes explored: {self.nodes_explored}")
self.log_messages.append(f"Iterations: {iteration_count}")
if self.best_solution is not None:
self.log_messages.append(f"Optimal objective: {self.best_objective:.6f}")
self.log_messages.append(f"Optimal solution: {self.best_solution}")
else:
self.log_messages.append("No feasible integer solution found")
# Append steps table string to log
steps_table_string = self.display_steps_table()
self.log_messages.append(steps_table_string)
# Visualize the graph
fig = self.visualize_graph()
return self.best_solution, self.best_objective, self.log_messages, fig
except Exception as e:
self.log_messages.append(f"Critical error in solve method: {e}")
fig = self.visualize_graph()
return None, float('-inf') if self.maximize else float('inf'), self.log_messages, fig
def solve_branch_and_bound_interface(c_str, A_str, b_str, integer_vars_str, binary_vars_str, maximize_bool):
"""
Enhanced wrapper function to connect BranchAndBoundSolver with Gradio interface.
Provides comprehensive input validation, error handling, and user-friendly error messages.
"""
log_messages = []
try:
# Enhanced input validation with detailed error messages
log_messages.append("Starting input validation...")
# Validate and parse objective coefficients
if not c_str or not c_str.strip():
log_messages.append("Error: Objective coefficients (c) cannot be empty. Please provide comma-separated values (e.g., '3,2').")
return "Error: Empty objective coefficients", "Error: Invalid input", "\n".join(log_messages), None
try:
c = parse_vector(c_str)
if not c or len(c) == 0:
log_messages.append("Error: Objective coefficients (c) could not be parsed or resulted in empty vector.")
log_messages.append("Please ensure format is comma-separated numbers (e.g., '3,2,1').")
return "Error parsing c", "Error parsing c", "\n".join(log_messages), None
except Exception as e:
log_messages.append(f"Error parsing objective coefficients (c): {str(e)}")
log_messages.append("Expected format: comma-separated numbers (e.g., '3,2,1')")
return "Error parsing c", "Error parsing c", "\n".join(log_messages), None
# Validate and parse constraint matrix
if not A_str or not A_str.strip():
log_messages.append("Error: Constraint matrix (A) cannot be empty. Please provide semicolon-separated rows with comma-separated values.")
log_messages.append("Example format: '1,2;3,4' for a 2x2 matrix.")
return "Error: Empty constraint matrix", "Error: Invalid input", "\n".join(log_messages), None
try:
A = parse_matrix(A_str)
if A.size == 0:
log_messages.append("Error: Constraint matrix (A) could not be parsed or is empty.")
log_messages.append("Expected format: rows separated by ';', elements by ',' (e.g., '1,2;3,4')")
return "Error parsing A", "Error parsing A", "\n".join(log_messages), None
except Exception as e:
log_messages.append(f"Error parsing constraint matrix (A): {str(e)}")
log_messages.append("Expected format: rows separated by ';', elements by ',' (e.g., '1,2;3,4')")
return "Error parsing A", "Error parsing A", "\n".join(log_messages), None
# Validate and parse constraint bounds
if not b_str or not b_str.strip():
log_messages.append("Error: Constraint bounds (b) cannot be empty. Please provide comma-separated values.")
log_messages.append("Example format: '10,8,3' for three constraints.")
return "Error: Empty constraint bounds", "Error: Invalid input", "\n".join(log_messages), None
try:
b = parse_vector(b_str)
if not b or len(b) == 0:
log_messages.append("Error: Constraint bounds (b) could not be parsed or resulted in empty vector.")
log_messages.append("Expected format: comma-separated numbers (e.g., '10,8,3')")
return "Error parsing b", "Error parsing b", "\n".join(log_messages), None
except Exception as e:
log_messages.append(f"Error parsing constraint bounds (b): {str(e)}")
log_messages.append("Expected format: comma-separated numbers (e.g., '10,8,3')")
return "Error parsing b", "Error parsing b", "\n".join(log_messages), None
# Enhanced dimension validation
if A.shape[0] != len(b):
log_messages.append(f"Error: Dimension mismatch between constraints matrix and bounds.")
log_messages.append(f"Matrix A has {A.shape[0]} rows but vector b has {len(b)} elements.")
log_messages.append("Each row in A represents one constraint, so A and b must have matching dimensions.")
return "Dimension mismatch A vs b", "Dimension mismatch A vs b", "\n".join(log_messages), None
if A.shape[1] != len(c):
log_messages.append(f"Error: Dimension mismatch between objective and constraints.")
log_messages.append(f"Matrix A has {A.shape[1]} columns but objective vector c has {len(c)} elements.")
log_messages.append("Each column in A represents one variable, so A and c must have matching dimensions.")
return "Dimension mismatch A vs c", "Dimension mismatch A vs c", "\n".join(log_messages), None
# Enhanced integer variables parsing with better error handling
integer_vars = []
if integer_vars_str and integer_vars_str.strip():
try:
# Handle special case for "all"
if integer_vars_str.strip().lower() == "all":
integer_vars = list(range(len(c)))
log_messages.append(f"All {len(c)} variables set as integer variables.")
else:
integer_vars = [int(x.strip()) for x in integer_vars_str.split(',') if x.strip()]
if not integer_vars:
log_messages.append("Warning: Integer variables string provided but no valid indices found.")
elif not all(0 <= i < len(c) for i in integer_vars):
invalid_indices = [i for i in integer_vars if not (0 <= i < len(c))]
log_messages.append(f"Error: Integer variable indices out of bounds: {invalid_indices}")
log_messages.append(f"Valid range is 0 to {len(c)-1} (0-indexed).")
return "Error: Invalid integer variable indices", "Error: Invalid input", "\n".join(log_messages), None
elif len(set(integer_vars)) != len(integer_vars):
duplicates = [i for i in set(integer_vars) if integer_vars.count(i) > 1]
log_messages.append(f"Warning: Duplicate integer variable indices found: {duplicates}. Removing duplicates.")
integer_vars = list(set(integer_vars))
except ValueError as e:
log_messages.append(f"Error parsing integer variable indices: {str(e)}")
log_messages.append("Please use comma-separated 0-indexed integers (e.g., '0,1,2') or 'all' for all variables.")
return "Error parsing integer_vars", "Error parsing integer_vars", "\n".join(log_messages), None
# Enhanced binary variables parsing with better error handling
binary_vars = []
if binary_vars_str and binary_vars_str.strip():
try:
binary_vars = [int(x.strip()) for x in binary_vars_str.split(',') if x.strip()]
if not binary_vars:
log_messages.append("Warning: Binary variables string provided but no valid indices found.")
elif not all(0 <= i < len(c) for i in binary_vars):
invalid_indices = [i for i in binary_vars if not (0 <= i < len(c))]
log_messages.append(f"Error: Binary variable indices out of bounds: {invalid_indices}")
log_messages.append(f"Valid range is 0 to {len(c)-1} (0-indexed).")
return "Error: Invalid binary variable indices", "Error: Invalid input", "\n".join(log_messages), None
elif len(set(binary_vars)) != len(binary_vars):
duplicates = [i for i in set(binary_vars) if binary_vars.count(i) > 1]
log_messages.append(f"Warning: Duplicate binary variable indices found: {duplicates}. Removing duplicates.")
binary_vars = list(set(binary_vars))
except ValueError as e:
log_messages.append(f"Error parsing binary variable indices: {str(e)}")
log_messages.append("Please use comma-separated 0-indexed integers (e.g., '0,1,2').")
return "Error parsing binary_vars", "Error parsing binary_vars", "\n".join(log_messages), None
# Check for overlap between integer and binary variables
if integer_vars and binary_vars:
overlap = set(integer_vars) & set(binary_vars)
if overlap:
log_messages.append(f"Warning: Variables {list(overlap)} are specified as both integer and binary.")
log_messages.append("Binary variables are automatically treated as integer. Removing from integer list.")
integer_vars = [i for i in integer_vars if i not in overlap]
# Log successful parsing
log_messages.append("✓ Input validation completed successfully.")
log_messages.append(f"✓ Problem size: {len(c)} variables, {A.shape[0]} constraints")
if integer_vars:
log_messages.append(f"✓ Integer variables: {integer_vars}")
if binary_vars:
log_messages.append(f"✓ Binary variables: {binary_vars}")
log_messages.append(f"✓ Optimization direction: {'Maximize' if maximize_bool else 'Minimize'}")
log_messages.append("Starting solver...")
# Create solver with enhanced error handling
try:
solver = BranchAndBoundSolver(
c=np.array(c),
A=A,
b=np.array(b),
integer_vars=integer_vars if integer_vars else None,
binary_vars=binary_vars if binary_vars else None,
maximize=maximize_bool
)
except Exception as e:
log_messages.append(f"Error creating solver instance: {str(e)}")
log_messages.append("This could indicate incompatible problem dimensions or invalid parameter values.")
return "Solver creation error", "Solver creation error", "\n".join(log_messages), None
# Solve with enhanced error handling
try:
best_solution, best_objective, solver_log, fig = solver.solve()
log_messages.extend(solver_log) # Add solver's internal log
except Exception as e:
log_messages.append(f"Error during solving: {str(e)}")
log_messages.append("The solver encountered an unexpected error. Check input validity and problem formulation.")
# Try to get partial results
try:
fig = solver.visualize_graph() if hasattr(solver, 'visualize_graph') else None
except:
fig = None
return "Solver execution error", "Solver execution error", "\n".join(log_messages), fig
# Enhanced result formatting with better error handling
try:
if best_solution is not None:
solution_str = ", ".join([f"{val:.6f}" for val in best_solution])
objective_str = f"{best_objective:.6f}"
log_messages.append(f"✓ Optimal solution found: x = ({solution_str})")
log_messages.append(f"✓ Optimal objective value: {objective_str}")
else:
solution_str = "No feasible integer solution found."
if best_objective == float('-inf'):
objective_str = "Unbounded (maximization)"
log_messages.append("Problem appears to be unbounded for maximization.")
elif best_objective == float('inf'):
objective_str = "Unbounded (minimization)"
log_messages.append("Problem appears to be unbounded for minimization.")
else:
objective_str = "Infeasible"
log_messages.append("No feasible solution exists for the given constraints.")
except Exception as e:
log_messages.append(f"Error formatting results: {str(e)}")
solution_str = "Result formatting error"
objective_str = "Result formatting error"
return solution_str, objective_str, "\n".join(log_messages), fig
except Exception as e:
# Catch-all error handler for unexpected exceptions
log_messages.append(f"Unexpected error in interface function: {str(e)}")
log_messages.append("Please check your input format and try again.")
log_messages.append("If the problem persists, there may be an issue with the solver implementation.")
return "Unexpected error", "Unexpected error", "\n".join(log_messages), None
branch_and_bound_interface = gr.Interface(
fn=solve_branch_and_bound_interface,
inputs=[
gr.Textbox(label="Objective Coefficients (c)", info="Comma-separated, e.g., 3,2"),
gr.Textbox(label="Constraint Matrix (A)", info="Rows separated by ';', elements by ',', e.g., 2,1; 1,1; 1,0"),
gr.Textbox(label="Constraint RHS (b)", info="Comma-separated, e.g., 10,8,3. Must be Ax <= b form."),
gr.Textbox(label="Integer Variable Indices (optional)", info="Comma-separated, 0-indexed. If empty and no binary vars, all vars are continuous for B&B (effectively LP). If empty but binary vars exist, only binary are integer. If 'all', all vars are integer."), # Adjusted info
gr.Textbox(label="Binary Variable Indices (optional)", info="Comma-separated, 0-indexed, e.g., 0,1"),
gr.Checkbox(label="Maximize?", value=True)
],
outputs=[
gr.Textbox(label="Optimal Solution (x)"),
gr.Textbox(label="Optimal Objective Value (z)"),
gr.Textbox(label="Solver Log and Steps", lines=15, interactive=False),
gr.Plot(label="Branch and Bound Tree")
],
title="Branch and Bound Solver for Mixed Integer Linear Programs (MILP)",
description="Solves MILPs (Ax <= b) using the Branch and Bound method. Specify integer/binary variables or leave empty if not applicable (for pure LP).",
examples=[
[ # Example 1: Knapsack-like problem (from a common example)
"8,11,6,4", # c: Objective (maximize)
"5,7,4,3; 1,1,1,1", # A: Constraints matrix
"14, 4", # b: Constraints RHS
"", # integer_vars: all variables are effectively integer due to binary constraint if specified, or by default if integer_vars=None
"0,1,2,3", # binary_vars: All variables are binary
True # Maximize
],
[ # Example 2: Simple MILP
"3,2,4", # c
"1,1,1; 2,1,0", # A
"10,5", # b
"0,2", # integer_vars: x0 and x2 are integer
"", # binary_vars
True # Maximize
],
[ # Example 3: Minimization problem (from a common example)
"3,5", # c (minimize)
"-1,0; 0,-1; 3,2", # A (original constraints might be >=, converted to <= by multiplying with -1)
"0,0,18", # b (original might be >=0, >=0, <=18. For >=0, we write -x <= 0)
"0,1", # integer_vars
"", # binary_vars
False # Minimize
],
[ # Example 4: Provided in task description
"5,4", #c
"1,1;2,0;0,1", #A
"5,6,3", #b
"0,1", #integer
"", #binary
True #maximize
]
],
flagging_mode="manual"
)