Spaces:
Runtime error
Runtime error
File size: 40,228 Bytes
1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a d8c6327 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a 1599566 79bc79a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 |
import cvxpy as cp
import numpy as np
import math
from queue import PriorityQueue
import networkx as nx
import matplotlib.pyplot as plt
from tabulate import tabulate
from scipy.optimize import linprog
import gradio as gr
from maths.operations_research.utils import parse_matrix
from maths.operations_research.utils import parse_vector
class BranchAndBoundSolver:
def __init__(self, c, A, b, integer_vars=None, binary_vars=None, maximize=True):
"""
Initialize the Branch and Bound solver
Parameters:
- c: Objective coefficients (for max c'x)
- A, b: Constraints Ax <= b
- integer_vars: Indices of variables that must be integers
- binary_vars: Indices of variables that must be binary (0 or 1)
- maximize: True for maximization, False for minimization
Raises:
- ValueError: If input dimensions are inconsistent or invalid indices provided
- TypeError: If inputs are not numeric arrays
"""
# Input validation
if not hasattr(c, '__len__') or len(c) == 0:
raise ValueError("Objective coefficients 'c' must be a non-empty array-like object")
if not hasattr(A, 'shape') or A.size == 0:
raise ValueError("Constraint matrix 'A' must be a non-empty 2D array")
if not hasattr(b, '__len__') or len(b) == 0:
raise ValueError("Constraint bounds 'b' must be a non-empty array-like object")
# Convert inputs to numpy arrays for consistency
try:
self.c = np.asarray(c, dtype=float)
self.A = np.asarray(A, dtype=float)
self.b = np.asarray(b, dtype=float)
except (ValueError, TypeError) as e:
raise TypeError(f"All inputs must be convertible to numeric arrays: {e}")
# Validate dimensions
if self.A.ndim != 2:
raise ValueError(f"Constraint matrix 'A' must be 2D, got {self.A.ndim}D")
if self.c.ndim != 1:
raise ValueError(f"Objective coefficients 'c' must be 1D, got {self.c.ndim}D")
if self.b.ndim != 1:
raise ValueError(f"Constraint bounds 'b' must be 1D, got {self.b.ndim}D")
if self.A.shape[0] != len(self.b):
raise ValueError(f"Number of rows in A ({self.A.shape[0]}) must match length of b ({len(self.b)})")
if self.A.shape[1] != len(self.c):
raise ValueError(f"Number of columns in A ({self.A.shape[1]}) must match length of c ({len(self.c)})")
self.n = len(self.c)
# Process binary and integer variables with validation
self.binary_vars = [] if binary_vars is None else list(binary_vars)
# Validate binary variable indices
for idx in self.binary_vars:
if not isinstance(idx, (int, np.integer)) or idx < 0 or idx >= self.n:
raise ValueError(f"Binary variable index {idx} is invalid. Must be integer in range [0, {self.n-1}]")
# If integer_vars not specified, assume all non-binary variables are integers
if integer_vars is None:
self.integer_vars = list(range(self.n))
else:
self.integer_vars = list(integer_vars)
# Validate integer variable indices
for idx in self.integer_vars:
if not isinstance(idx, (int, np.integer)) or idx < 0 or idx >= self.n:
raise ValueError(f"Integer variable index {idx} is invalid. Must be integer in range [0, {self.n-1}]")
# Add binary variables to integer variables list if they're not already there
for idx in self.binary_vars:
if idx not in self.integer_vars:
self.integer_vars.append(idx)
# Best solution found so far
self.best_solution = None
self.best_objective = float('-inf') if maximize else float('inf')
self.maximize = maximize
# Track nodes explored
self.nodes_explored = 0
# Graph for visualization
self.graph = nx.DiGraph()
self.node_id = 0
# For tabular display of steps
self.steps_table = []
# Set of active nodes
self.active_nodes = set() # For logging messages
self.log_messages = []
def is_integer_feasible(self, x):
"""Check if the solution satisfies integer constraints
Args:
x: Solution vector to check
Returns:
bool: True if solution satisfies integer constraints, False otherwise
"""
if x is None:
return False
try:
for idx in self.integer_vars:
if idx >= len(x):
raise IndexError(f"Integer variable index {idx} exceeds solution vector length {len(x)}")
if abs(round(x[idx]) - x[idx]) > 1e-6:
return False
return True
except (IndexError, TypeError) as e:
self.log_messages.append(f"Error checking integer feasibility: {e}")
return False
def get_branching_variable(self, x):
"""Select most fractional variable to branch on
Args:
x: Solution vector
Returns:
int: Index of variable to branch on, or -1 if no fractional variables found
"""
if x is None:
return -1
max_fractional = -1
branching_var = -1
try:
for idx in self.integer_vars:
if idx >= len(x):
self.log_messages.append(f"Warning: Integer variable index {idx} exceeds solution vector length {len(x)}")
continue
fractional_part = abs(x[idx] - round(x[idx]))
if fractional_part > max_fractional and fractional_part > 1e-6:
max_fractional = fractional_part
branching_var = idx
except (IndexError, TypeError) as e:
self.log_messages.append(f"Error finding branching variable: {e}")
return -1
return branching_var
def solve_relaxation(self, lower_bounds, upper_bounds):
"""Solve the continuous relaxation with given bounds
Args:
lower_bounds: List of lower bounds for variables
upper_bounds: List of upper bounds for variables
Returns:
tuple: (solution_vector, objective_value) or (None, inf/-inf) if infeasible
"""
try:
# Validate bounds
if len(lower_bounds) != self.n or len(upper_bounds) != self.n:
raise ValueError(f"Bounds must have length {self.n}, got {len(lower_bounds)}, {len(upper_bounds)}")
x = cp.Variable(self.n)
# Set the objective - maximize c'x or minimize -c'x
if self.maximize:
objective = cp.Maximize(self.c @ x)
else:
objective = cp.Minimize(self.c @ x)
# Basic constraints Ax <= b
constraints = [self.A @ x <= self.b]
# Add bounds with validation
for i in range(self.n):
if lower_bounds[i] is not None:
if not np.isfinite(lower_bounds[i]):
raise ValueError(f"Lower bound for variable {i} must be finite, got {lower_bounds[i]}")
constraints.append(x[i] >= lower_bounds[i])
if upper_bounds[i] is not None:
if not np.isfinite(upper_bounds[i]):
raise ValueError(f"Upper bound for variable {i} must be finite, got {upper_bounds[i]}")
constraints.append(x[i] <= upper_bounds[i])
# Check for contradictory bounds
if (lower_bounds[i] is not None and upper_bounds[i] is not None and
lower_bounds[i] > upper_bounds[i]):
self.log_messages.append(f"Warning: Contradictory bounds for variable {i}: [{lower_bounds[i]}, {upper_bounds[i]}]")
prob = cp.Problem(objective, constraints)
# Solve with error handling
objective_value = prob.solve()
# Check solver status
if prob.status in ['infeasible', 'unbounded']:
self.log_messages.append(f"Relaxation problem status: {prob.status}")
return None, float('-inf') if self.maximize else float('inf')
elif prob.status != 'optimal':
self.log_messages.append(f"Relaxation solver warning: {prob.status}")
# Validate solution
if x.value is None:
return None, float('-inf') if self.maximize else float('inf')
# Check for numerical issues
if not np.isfinite(objective_value):
self.log_messages.append(f"Warning: Non-finite objective value: {objective_value}")
return None, float('-inf') if self.maximize else float('inf')
return x.value, objective_value
except cp.error.SolverError as e:
self.log_messages.append(f"CVXPY solver error: {e}")
return None, float('-inf') if self.maximize else float('inf')
except Exception as e:
self.log_messages.append(f"Unexpected error in solve_relaxation: {e}")
return None, float('-inf') if self.maximize else float('inf')
def add_node_to_graph(self, node_name, objective_value, x_value, parent=None, branch_var=None, branch_cond=None):
"""Add a node to the branch and bound graph
Args:
node_name: Unique identifier for the node
objective_value: Objective value at this node
x_value: Solution vector at this node
parent: Parent node name (for edges)
branch_var: Variable being branched on
branch_cond: Branching condition string
Returns:
str: The node name that was added
"""
try:
# Validate inputs
if not isinstance(node_name, str):
raise ValueError(f"Node name must be string, got {type(node_name)}")
if objective_value is not None and not np.isfinite(objective_value):
self.log_messages.append(f"Warning: Non-finite objective value for node {node_name}: {objective_value}")
self.graph.add_node(node_name, obj=objective_value, x=x_value,
branch_var=branch_var, branch_cond=branch_cond)
if parent is not None:
if parent not in self.graph.nodes:
self.log_messages.append(f"Warning: Parent node {parent} not found in graph")
else:
# Use branch_var + 1 to show 1-indexed variables in the display if branch_var is not None and branch_cond is not None:
label = f"x_{branch_var + 1} {branch_cond}"
self.graph.add_edge(parent, node_name, label=label)
return node_name
except Exception as e:
self.log_messages.append(f"Error adding node {node_name} to graph: {e}")
return node_name # Return the name even if there was an error
def visualize_graph(self):
"""Visualize the branch and bound graph
Returns:
matplotlib.figure.Figure: The graph visualization figure
"""
try:
if len(self.graph.nodes) == 0:
# Create empty plot if no nodes
fig = plt.figure(figsize=(10, 6))
plt.text(0.5, 0.5, 'No nodes to display', ha='center', va='center', transform=plt.gca().transAxes)
plt.title("Branch and Bound Tree (Empty)", fontsize=14)
plt.axis('off')
return fig
fig = plt.figure(figsize=(20, 8))
# Use hierarchical layout if possible, fall back to spring layout
try:
pos = nx.nx_agraph.graphviz_layout(self.graph, prog='dot')
except:
try:
pos = nx.spring_layout(self.graph, k=3, iterations=50)
except:
# Fallback to simple circular layout
pos = nx.circular_layout(self.graph)
# Node labels: Node name, Objective value and solution
labels = {}
for node, data in self.graph.nodes(data=True):
try:
if data.get('x') is not None and len(data['x']) > 0:
x_str = ', '.join([f"{x:.2f}" for x in data['x']])
obj_val = data.get('obj', 'N/A')
if isinstance(obj_val, (int, float)) and np.isfinite(obj_val):
labels[node] = f"{node}\n({obj_val:.2f}, ({x_str}))"
else:
labels[node] = f"{node}\n(N/A, ({x_str}))"
else:
labels[node] = f"{node}\nInfeasible"
except Exception as e:
labels[node] = f"{node}\nError: {str(e)[:20]}..."
# Edge labels: Branching conditions
edge_labels = nx.get_edge_attributes(self.graph, 'label')
# Draw components with error handling
try:
nx.draw_networkx_nodes(self.graph, pos, node_size=2000, node_color='skyblue')
except Exception as e:
self.log_messages.append(f"Warning: Could not draw nodes: {e}")
try:
nx.draw_networkx_edges(self.graph, pos, width=1.5, arrowsize=20, edge_color='gray')
except Exception as e:
self.log_messages.append(f"Warning: Could not draw edges: {e}")
try:
nx.draw_networkx_labels(self.graph, pos, labels, font_size=10, font_family='sans-serif')
except Exception as e:
self.log_messages.append(f"Warning: Could not draw node labels: {e}")
try:
nx.draw_networkx_edge_labels(self.graph, pos, edge_labels=edge_labels,
font_size=10, font_family='sans-serif')
except Exception as e:
self.log_messages.append(f"Warning: Could not draw edge labels: {e}")
plt.title("Branch and Bound Tree", fontsize=14)
plt.axis('off')
plt.tight_layout()
return fig
except Exception as e:
self.log_messages.append(f"Error creating graph visualization: {e}")
# Return a simple error plot
fig = plt.figure(figsize=(10, 6))
plt.text(0.5, 0.5, f'Error creating visualization:\n{str(e)}',
ha='center', va='center', transform=plt.gca().transAxes)
plt.title("Branch and Bound Tree (Error)", fontsize=14)
plt.axis('off')
return fig
def display_steps_table(self):
"""Display the steps in tabular format
Returns:
str: Formatted table string
"""
try:
if not self.steps_table:
return "No steps recorded."
headers = ["Node", "z", "x", "z*", "x*", "UB", "LB", "Z at end of stage"]
return tabulate(self.steps_table, headers=headers, tablefmt="grid")
except Exception as e:
self.log_messages.append(f"Error creating steps table: {e}")
return f"Error displaying steps table: {e}"
def solve(self, verbose=True, max_iterations=1000):
"""Solve the problem using branch and bound
Args:
verbose: Whether to log detailed information
max_iterations: Maximum number of iterations to prevent infinite loops
Returns:
tuple: (best_solution, best_objective, log_messages, visualization_figure)
"""
self.log_messages = [] # Initialize log for this run
try:
# Initialize bounds with validation
lower_bounds = [0.0] * self.n
upper_bounds = [None] * self.n # None means unbounded
# Set upper bounds for binary variables
for idx in self.binary_vars:
if idx < len(upper_bounds):
upper_bounds[idx] = 1.0
else:
raise IndexError(f"Binary variable index {idx} exceeds problem dimension {self.n}")
# Create a priority queue for nodes
node_queue = PriorityQueue()
iteration_count = 0
# Solve the root relaxation
self.log_messages.append("Step 1: Solving root relaxation (continuous problem)")
try:
x_root, obj_root = self.solve_relaxation(lower_bounds, upper_bounds)
except Exception as e:
self.log_messages.append(f"Error solving root relaxation: {e}")
fig = self.visualize_graph()
return None, float('-inf') if self.maximize else float('inf'), self.log_messages, fig
if x_root is None:
self.log_messages.append("Root problem infeasible")
fig = self.visualize_graph()
return None, float('-inf') if self.maximize else float('inf'), self.log_messages, fig
# Add root node to the graph
root_node = "S0"
self.add_node_to_graph(root_node, obj_root, x_root)
self.log_messages.append(f"Root relaxation objective: {obj_root:.6f}")
self.log_messages.append(f"Root solution: {x_root}")
# Initial upper bound is the root objective
upper_bound = obj_root
# Check if the root solution is already integer-feasible
if self.is_integer_feasible(x_root):
self.log_messages.append("Root solution is integer-feasible! No need for branching.")
self.best_solution = x_root.copy()
self.best_objective = obj_root
# Add to steps table
try:
active_nodes_str = "∅" if not self.active_nodes else "{" + ", ".join(self.active_nodes) + "}"
self.steps_table.append([
root_node, f"{obj_root:.2f}", f"({', '.join([f'{x:.2f}' for x in x_root])})",
f"{self.best_objective:.2f}", f"({', '.join([f'{x:.2f}' for x in self.best_solution])})",
f"{upper_bound:.2f}", f"{self.best_objective:.2f}", active_nodes_str
])
except Exception as e:
self.log_messages.append(f"Error updating steps table: {e}")
steps_table_string = self.display_steps_table()
self.log_messages.append(steps_table_string)
fig = self.visualize_graph()
return self.best_solution, self.best_objective, self.log_messages, fig
# Add root node to the queue and active nodes set
priority = -obj_root if self.maximize else obj_root
node_queue.put((priority, self.nodes_explored, root_node, lower_bounds.copy(), upper_bounds.copy()))
self.active_nodes.add(root_node)
# Add entry to steps table for root node
try:
active_nodes_str = "{" + ", ".join(self.active_nodes) + "}"
lb_str = "-" if self.best_objective == float('-inf') else f"{self.best_objective:.2f}"
x_star_str = "-" if self.best_solution is None else f"({', '.join([f'{x:.2f}' for x in self.best_solution])})"
self.steps_table.append([
root_node, f"{obj_root:.2f}", f"({', '.join([f'{x:.2f}' for x in x_root])})",
lb_str, x_star_str, f"{upper_bound:.2f}", lb_str, active_nodes_str
])
except Exception as e:
self.log_messages.append(f"Error updating initial steps table: {e}")
self.log_messages.append("\nStarting branch and bound process:")
node_counter = 1
while not node_queue.empty() and iteration_count < max_iterations:
iteration_count += 1
try:
# Get the node with the highest objective (for maximization)
priority, _, node_name, node_lower_bounds, node_upper_bounds = node_queue.get()
self.nodes_explored += 1
self.log_messages.append(f"\nStep {self.nodes_explored + 1}: Exploring node {node_name}")
# Remove from active nodes
if node_name in self.active_nodes:
self.active_nodes.remove(node_name)
# Branch on most fractional variable
if node_name not in self.graph.nodes:
self.log_messages.append(f"Warning: Node {node_name} not found in graph")
continue
current_solution = self.graph.nodes[node_name].get('x')
if current_solution is None:
self.log_messages.append(f"Warning: No solution found for node {node_name}")
continue
branch_var = self.get_branching_variable(current_solution)
if branch_var == -1:
self.log_messages.append(f"Warning: No branching variable found for node {node_name}")
continue
branch_val = current_solution[branch_var]
# Process branches with enhanced error handling
self._process_branches(node_name, branch_var, branch_val, node_lower_bounds,
node_upper_bounds, node_queue, node_counter)
node_counter += 2 # Two new nodes created
# Update upper bound
if not node_queue.empty():
next_priority = node_queue.queue[0][0]
upper_bound = -next_priority if self.maximize else next_priority
else:
upper_bound = self.best_objective
# Add to steps table
self._add_step_to_table(node_name, upper_bound)
except Exception as e:
self.log_messages.append(f"Error processing node {node_name if 'node_name' in locals() else 'unknown'}: {e}")
continue
# Check for max iterations exceeded
if iteration_count >= max_iterations:
self.log_messages.append(f"Warning: Maximum iterations ({max_iterations}) reached. Solution may not be optimal.")
self.log_messages.append("\nBranch and bound completed!")
self.log_messages.append(f"Nodes explored: {self.nodes_explored}")
self.log_messages.append(f"Iterations: {iteration_count}")
if self.best_solution is not None:
self.log_messages.append(f"Optimal objective: {self.best_objective:.6f}")
self.log_messages.append(f"Optimal solution: {self.best_solution}")
else:
self.log_messages.append("No feasible integer solution found")
# Append steps table string to log
steps_table_string = self.display_steps_table()
self.log_messages.append(steps_table_string)
# Visualize the graph
fig = self.visualize_graph()
return self.best_solution, self.best_objective, self.log_messages, fig
except Exception as e:
self.log_messages.append(f"Critical error in solve method: {e}")
fig = self.visualize_graph()
return None, float('-inf') if self.maximize else float('inf'), self.log_messages, fig
def solve_branch_and_bound_interface(c_str, A_str, b_str, integer_vars_str, binary_vars_str, maximize_bool):
"""
Enhanced wrapper function to connect BranchAndBoundSolver with Gradio interface.
Provides comprehensive input validation, error handling, and user-friendly error messages.
"""
log_messages = []
try:
# Enhanced input validation with detailed error messages
log_messages.append("Starting input validation...")
# Validate and parse objective coefficients
if not c_str or not c_str.strip():
log_messages.append("Error: Objective coefficients (c) cannot be empty. Please provide comma-separated values (e.g., '3,2').")
return "Error: Empty objective coefficients", "Error: Invalid input", "\n".join(log_messages), None
try:
c = parse_vector(c_str)
if not c or len(c) == 0:
log_messages.append("Error: Objective coefficients (c) could not be parsed or resulted in empty vector.")
log_messages.append("Please ensure format is comma-separated numbers (e.g., '3,2,1').")
return "Error parsing c", "Error parsing c", "\n".join(log_messages), None
except Exception as e:
log_messages.append(f"Error parsing objective coefficients (c): {str(e)}")
log_messages.append("Expected format: comma-separated numbers (e.g., '3,2,1')")
return "Error parsing c", "Error parsing c", "\n".join(log_messages), None
# Validate and parse constraint matrix
if not A_str or not A_str.strip():
log_messages.append("Error: Constraint matrix (A) cannot be empty. Please provide semicolon-separated rows with comma-separated values.")
log_messages.append("Example format: '1,2;3,4' for a 2x2 matrix.")
return "Error: Empty constraint matrix", "Error: Invalid input", "\n".join(log_messages), None
try:
A = parse_matrix(A_str)
if A.size == 0:
log_messages.append("Error: Constraint matrix (A) could not be parsed or is empty.")
log_messages.append("Expected format: rows separated by ';', elements by ',' (e.g., '1,2;3,4')")
return "Error parsing A", "Error parsing A", "\n".join(log_messages), None
except Exception as e:
log_messages.append(f"Error parsing constraint matrix (A): {str(e)}")
log_messages.append("Expected format: rows separated by ';', elements by ',' (e.g., '1,2;3,4')")
return "Error parsing A", "Error parsing A", "\n".join(log_messages), None
# Validate and parse constraint bounds
if not b_str or not b_str.strip():
log_messages.append("Error: Constraint bounds (b) cannot be empty. Please provide comma-separated values.")
log_messages.append("Example format: '10,8,3' for three constraints.")
return "Error: Empty constraint bounds", "Error: Invalid input", "\n".join(log_messages), None
try:
b = parse_vector(b_str)
if not b or len(b) == 0:
log_messages.append("Error: Constraint bounds (b) could not be parsed or resulted in empty vector.")
log_messages.append("Expected format: comma-separated numbers (e.g., '10,8,3')")
return "Error parsing b", "Error parsing b", "\n".join(log_messages), None
except Exception as e:
log_messages.append(f"Error parsing constraint bounds (b): {str(e)}")
log_messages.append("Expected format: comma-separated numbers (e.g., '10,8,3')")
return "Error parsing b", "Error parsing b", "\n".join(log_messages), None
# Enhanced dimension validation
if A.shape[0] != len(b):
log_messages.append(f"Error: Dimension mismatch between constraints matrix and bounds.")
log_messages.append(f"Matrix A has {A.shape[0]} rows but vector b has {len(b)} elements.")
log_messages.append("Each row in A represents one constraint, so A and b must have matching dimensions.")
return "Dimension mismatch A vs b", "Dimension mismatch A vs b", "\n".join(log_messages), None
if A.shape[1] != len(c):
log_messages.append(f"Error: Dimension mismatch between objective and constraints.")
log_messages.append(f"Matrix A has {A.shape[1]} columns but objective vector c has {len(c)} elements.")
log_messages.append("Each column in A represents one variable, so A and c must have matching dimensions.")
return "Dimension mismatch A vs c", "Dimension mismatch A vs c", "\n".join(log_messages), None
# Enhanced integer variables parsing with better error handling
integer_vars = []
if integer_vars_str and integer_vars_str.strip():
try:
# Handle special case for "all"
if integer_vars_str.strip().lower() == "all":
integer_vars = list(range(len(c)))
log_messages.append(f"All {len(c)} variables set as integer variables.")
else:
integer_vars = [int(x.strip()) for x in integer_vars_str.split(',') if x.strip()]
if not integer_vars:
log_messages.append("Warning: Integer variables string provided but no valid indices found.")
elif not all(0 <= i < len(c) for i in integer_vars):
invalid_indices = [i for i in integer_vars if not (0 <= i < len(c))]
log_messages.append(f"Error: Integer variable indices out of bounds: {invalid_indices}")
log_messages.append(f"Valid range is 0 to {len(c)-1} (0-indexed).")
return "Error: Invalid integer variable indices", "Error: Invalid input", "\n".join(log_messages), None
elif len(set(integer_vars)) != len(integer_vars):
duplicates = [i for i in set(integer_vars) if integer_vars.count(i) > 1]
log_messages.append(f"Warning: Duplicate integer variable indices found: {duplicates}. Removing duplicates.")
integer_vars = list(set(integer_vars))
except ValueError as e:
log_messages.append(f"Error parsing integer variable indices: {str(e)}")
log_messages.append("Please use comma-separated 0-indexed integers (e.g., '0,1,2') or 'all' for all variables.")
return "Error parsing integer_vars", "Error parsing integer_vars", "\n".join(log_messages), None
# Enhanced binary variables parsing with better error handling
binary_vars = []
if binary_vars_str and binary_vars_str.strip():
try:
binary_vars = [int(x.strip()) for x in binary_vars_str.split(',') if x.strip()]
if not binary_vars:
log_messages.append("Warning: Binary variables string provided but no valid indices found.")
elif not all(0 <= i < len(c) for i in binary_vars):
invalid_indices = [i for i in binary_vars if not (0 <= i < len(c))]
log_messages.append(f"Error: Binary variable indices out of bounds: {invalid_indices}")
log_messages.append(f"Valid range is 0 to {len(c)-1} (0-indexed).")
return "Error: Invalid binary variable indices", "Error: Invalid input", "\n".join(log_messages), None
elif len(set(binary_vars)) != len(binary_vars):
duplicates = [i for i in set(binary_vars) if binary_vars.count(i) > 1]
log_messages.append(f"Warning: Duplicate binary variable indices found: {duplicates}. Removing duplicates.")
binary_vars = list(set(binary_vars))
except ValueError as e:
log_messages.append(f"Error parsing binary variable indices: {str(e)}")
log_messages.append("Please use comma-separated 0-indexed integers (e.g., '0,1,2').")
return "Error parsing binary_vars", "Error parsing binary_vars", "\n".join(log_messages), None
# Check for overlap between integer and binary variables
if integer_vars and binary_vars:
overlap = set(integer_vars) & set(binary_vars)
if overlap:
log_messages.append(f"Warning: Variables {list(overlap)} are specified as both integer and binary.")
log_messages.append("Binary variables are automatically treated as integer. Removing from integer list.")
integer_vars = [i for i in integer_vars if i not in overlap]
# Log successful parsing
log_messages.append("✓ Input validation completed successfully.")
log_messages.append(f"✓ Problem size: {len(c)} variables, {A.shape[0]} constraints")
if integer_vars:
log_messages.append(f"✓ Integer variables: {integer_vars}")
if binary_vars:
log_messages.append(f"✓ Binary variables: {binary_vars}")
log_messages.append(f"✓ Optimization direction: {'Maximize' if maximize_bool else 'Minimize'}")
log_messages.append("Starting solver...")
# Create solver with enhanced error handling
try:
solver = BranchAndBoundSolver(
c=np.array(c),
A=A,
b=np.array(b),
integer_vars=integer_vars if integer_vars else None,
binary_vars=binary_vars if binary_vars else None,
maximize=maximize_bool
)
except Exception as e:
log_messages.append(f"Error creating solver instance: {str(e)}")
log_messages.append("This could indicate incompatible problem dimensions or invalid parameter values.")
return "Solver creation error", "Solver creation error", "\n".join(log_messages), None
# Solve with enhanced error handling
try:
best_solution, best_objective, solver_log, fig = solver.solve()
log_messages.extend(solver_log) # Add solver's internal log
except Exception as e:
log_messages.append(f"Error during solving: {str(e)}")
log_messages.append("The solver encountered an unexpected error. Check input validity and problem formulation.")
# Try to get partial results
try:
fig = solver.visualize_graph() if hasattr(solver, 'visualize_graph') else None
except:
fig = None
return "Solver execution error", "Solver execution error", "\n".join(log_messages), fig
# Enhanced result formatting with better error handling
try:
if best_solution is not None:
solution_str = ", ".join([f"{val:.6f}" for val in best_solution])
objective_str = f"{best_objective:.6f}"
log_messages.append(f"✓ Optimal solution found: x = ({solution_str})")
log_messages.append(f"✓ Optimal objective value: {objective_str}")
else:
solution_str = "No feasible integer solution found."
if best_objective == float('-inf'):
objective_str = "Unbounded (maximization)"
log_messages.append("Problem appears to be unbounded for maximization.")
elif best_objective == float('inf'):
objective_str = "Unbounded (minimization)"
log_messages.append("Problem appears to be unbounded for minimization.")
else:
objective_str = "Infeasible"
log_messages.append("No feasible solution exists for the given constraints.")
except Exception as e:
log_messages.append(f"Error formatting results: {str(e)}")
solution_str = "Result formatting error"
objective_str = "Result formatting error"
return solution_str, objective_str, "\n".join(log_messages), fig
except Exception as e:
# Catch-all error handler for unexpected exceptions
log_messages.append(f"Unexpected error in interface function: {str(e)}")
log_messages.append("Please check your input format and try again.")
log_messages.append("If the problem persists, there may be an issue with the solver implementation.")
return "Unexpected error", "Unexpected error", "\n".join(log_messages), None
branch_and_bound_interface = gr.Interface(
fn=solve_branch_and_bound_interface,
inputs=[
gr.Textbox(label="Objective Coefficients (c)", info="Comma-separated, e.g., 3,2"),
gr.Textbox(label="Constraint Matrix (A)", info="Rows separated by ';', elements by ',', e.g., 2,1; 1,1; 1,0"),
gr.Textbox(label="Constraint RHS (b)", info="Comma-separated, e.g., 10,8,3. Must be Ax <= b form."),
gr.Textbox(label="Integer Variable Indices (optional)", info="Comma-separated, 0-indexed. If empty and no binary vars, all vars are continuous for B&B (effectively LP). If empty but binary vars exist, only binary are integer. If 'all', all vars are integer."), # Adjusted info
gr.Textbox(label="Binary Variable Indices (optional)", info="Comma-separated, 0-indexed, e.g., 0,1"),
gr.Checkbox(label="Maximize?", value=True)
],
outputs=[
gr.Textbox(label="Optimal Solution (x)"),
gr.Textbox(label="Optimal Objective Value (z)"),
gr.Textbox(label="Solver Log and Steps", lines=15, interactive=False),
gr.Plot(label="Branch and Bound Tree")
],
title="Branch and Bound Solver for Mixed Integer Linear Programs (MILP)",
description="Solves MILPs (Ax <= b) using the Branch and Bound method. Specify integer/binary variables or leave empty if not applicable (for pure LP).",
examples=[
[ # Example 1: Knapsack-like problem (from a common example)
"8,11,6,4", # c: Objective (maximize)
"5,7,4,3; 1,1,1,1", # A: Constraints matrix
"14, 4", # b: Constraints RHS
"", # integer_vars: all variables are effectively integer due to binary constraint if specified, or by default if integer_vars=None
"0,1,2,3", # binary_vars: All variables are binary
True # Maximize
],
[ # Example 2: Simple MILP
"3,2,4", # c
"1,1,1; 2,1,0", # A
"10,5", # b
"0,2", # integer_vars: x0 and x2 are integer
"", # binary_vars
True # Maximize
],
[ # Example 3: Minimization problem (from a common example)
"3,5", # c (minimize)
"-1,0; 0,-1; 3,2", # A (original constraints might be >=, converted to <= by multiplying with -1)
"0,0,18", # b (original might be >=0, >=0, <=18. For >=0, we write -x <= 0)
"0,1", # integer_vars
"", # binary_vars
False # Minimize
],
[ # Example 4: Provided in task description
"5,4", #c
"1,1;2,0;0,1", #A
"5,6,3", #b
"0,1", #integer
"", #binary
True #maximize
]
],
flagging_mode="manual"
)
|