File size: 7,935 Bytes
9b3b8c8
 
 
 
 
54f380d
6560704
30ca660
9b3b8c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54f380d
 
 
 
 
 
 
 
 
9b3b8c8
30ca660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b3b8c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6560704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6cc900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6560704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6cc900
 
 
 
 
 
 
 
 
 
6560704
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
"""
Solve the quadratic equation ax^2 + bx + c = 0.
"""
import cmath
from fractions import Fraction
import sympy as sp
import gradio as gr
import numpy as np

def solve_quadratic(a: float, b: float, c: float, return_format: str = "string"):
    if a == 0:
        if b == 0:
            result = "Not a valid equation (a and b cannot both be zero)." if c != 0 else "Infinite solutions (0 = 0)"
            return result if return_format == "string" else {"error": result}
        root = -c/b
        if return_format == "string":
            return f"Linear equation: x = {root}"
        else:
            return {"roots": (root, None), "vertex": None}
    vertex_x = -b / (2 * a)
    vertex_y = c - (b**2 / (4 * a))
    vertex = (vertex_x, vertex_y)
    delta = b**2 - 4*a*c
    # Surd form using sympy
    if return_format == "surd":
        x1 = (-b + sp.sqrt(delta)) / (2*a)
        x2 = (-b - sp.sqrt(delta)) / (2*a)
        return {
            "roots": (sp.simplify(x1), sp.simplify(x2)),
            "vertex": vertex,
            "discriminant": delta
        }
    if return_format == "dict":
        # Use numpy.roots for quadratic
        roots = np.roots([a, b, c])
        # Ensure two roots (may be complex)
        if len(roots) == 1:
            roots = (roots[0], None)
        else:
            roots = tuple(roots)
        # Try to convert to Fraction if real
        roots_fmt = []
        for r in roots:
            if r is not None and np.isreal(r):
                roots_fmt.append(Fraction(r.real).limit_denominator())
            else:
                roots_fmt.append(r)
        return {"roots": tuple(roots_fmt), "vertex": vertex}
    if delta > 0:
        x1 = (-b + delta**0.5) / (2*a)
        x2 = (-b - delta**0.5) / (2*a)
        try:
            x1_frac = Fraction(x1).limit_denominator()
            x2_frac = Fraction(x2).limit_denominator()
            return f"Two distinct real roots: x1 = {x1_frac}, x2 = {x2_frac}\nVertex at: {vertex}"
        except:
            return f"Two distinct real roots: x1 = {x1}, x2 = {x2}\nVertex at: {vertex}"
    elif delta == 0:
        x1 = -b / (2*a)
        try:
            x1_frac = Fraction(x1).limit_denominator()
            return f"One real root (repeated): x = {x1_frac}\nVertex at: {vertex}"
        except:
            return f"One real root (repeated): x = {x1}\nVertex at: {vertex}"
    else:
        real_part = -b / (2*a)
        imag_part = (-delta)**0.5 / (2*a)
        return f"Two complex roots: x1 = {real_part} + {imag_part}i, x2 = {real_part} - {imag_part}i\nVertex at: {vertex}"

def quadratic_solver_wrapper(a, b, c, return_format):
    result = solve_quadratic(a, b, c, return_format=return_format)
    if return_format == "dict":
        if "error" in result:
            return result["error"]
        roots = result["roots"]
        vertex = result["vertex"]
        output = ""
        sign_b = "+" if b >= 0 else ""
        sign_c = "+" if c >= 0 else ""
        output += f"Equation: {a}{sign_b} {b}x {sign_c} {c} = 0\n\n"
        if roots[1] is None:
            output += f"Root: {roots[0]}\n"
        else:
            output += f"Root 1: {roots[0]}\n"
            output += f"Root 2: {roots[1]}\n"
        if vertex:
            output += f"\nVertex: ({vertex[0]}, {vertex[1]})"
        return output
    else:
        return result

solve_quadratic_interface = gr.Interface(
    fn=quadratic_solver_wrapper,
    inputs=[
        gr.Number(label="a (coefficient of x²)"),
        gr.Number(label="b (coefficient of x)"),
        gr.Number(label="c (constant)"),
        gr.Radio(
            choices=["string", "dict", "surd"],
            value="dict",
            label="Output Format",
            info="'string' for text output, 'dict' for formatted output, 'surd' for exact roots"
        )
    ],
    outputs="text",
    title="Quadratic Equation Solver",
    description="""
Solve ax² + bx + c = 0 and find the vertex. Enter the coefficients for your quadratic equation and select the output format.

Example: For x² - 3x + 2 = 0, enter a=1, b=-3, c=2.

Output format:
- 'string': plain text
- 'dict': formatted output
- 'surd': exact roots (if possible)
""",
    examples=[
        [1, -3, 2, "dict"],
        [2, 4, -6, "string"],
        [1, 2, 1, "surd"]
    ]
)

def plot_quadratic(a, b, c):
    import numpy as np
    import matplotlib.pyplot as plt
    result = solve_quadratic(a, b, c, return_format="dict")
    vertex_x = -b / (2*a) if a != 0 else 0
    vertex_y = c - (b**2 / (4*a)) if a != 0 else 0
    fig, ax = plt.subplots(figsize=(8, 6))
    if a != 0:
        if "roots" in result and result["roots"][0] is not None and result["roots"][1] is not None:
            root1 = result["roots"][0].real if hasattr(result["roots"][0], "real") else float(result["roots"][0])
            root2 = result["roots"][1].real if hasattr(result["roots"][1], "real") else float(result["roots"][1])
            x_min = min(root1, root2, vertex_x) - 2
            x_max = max(root1, root2, vertex_x) + 2
        else:
            x_min = vertex_x - 5
            x_max = vertex_x + 5
        x = np.linspace(x_min, x_max, 1000)
        y = a * (x**2) + b * x + c
        ax.plot(x, y, 'b-', label=f'f(x) = {a}x² + {b}x + {c}')
        ax.plot(vertex_x, vertex_y, 'ro', label=f'Vertex: ({vertex_x:.2f}, {vertex_y:.2f})')
        if "roots" in result:
            roots = result["roots"]
            if roots[0] is not None and (isinstance(roots[0], (int, float)) or (hasattr(roots[0], "imag") and roots[0].imag == 0)):
                root1 = float(roots[0].real if hasattr(roots[0], "real") else roots[0])
                ax.plot(root1, 0, 'go', label=f'Root 1: {root1:.2f}')
            if roots[1] is not None and (isinstance(roots[1], (int, float)) or (hasattr(roots[1], "imag") and roots[1].imag == 0)):
                root2 = float(roots[1].real if hasattr(roots[1], "real") else roots[1])
                ax.plot(root2, 0, 'go', label=f'Root 2: {root2:.2f}')
        ax.axhline(y=0, color='k', linestyle='-', alpha=0.3)
        ax.axvline(x=0, color='k', linestyle='-', alpha=0.3)
        ax.grid(True, alpha=0.3)
        ax.set_xlabel('x')
        ax.set_ylabel('f(x)')
        ax.set_title(f'Graph of f(x) = {a}x² + {b}x + {c}')
        ax.legend()
    else:
        if b != 0:
            x = np.linspace(-5, 5, 100)
            y = b * x + c
            ax.plot(x, y, 'b-', label=f'f(x) = {b}x + {c} (Linear)')
            root = -c/b
            ax.plot(root, 0, 'go', label=f'Root: {root:.2f}')
            ax.axhline(y=0, color='k', linestyle='-', alpha=0.3)
            ax.axvline(x=0, color='k', linestyle='-', alpha=0.3)
            ax.grid(True, alpha=0.3)
            ax.set_xlabel('x')
            ax.set_ylabel('f(x)')
            ax.set_title(f'Graph of f(x) = {b}x + {c} (Linear)')
            ax.legend()
        else:
            x = np.linspace(-5, 5, 100)
            y = c * np.ones_like(x)
            ax.plot(x, y, 'b-', label=f'f(x) = {c} (Constant)')
            ax.axhline(y=0, color='k', linestyle='-', alpha=0.3)
            ax.axvline(x=0, color='k', linestyle='-', alpha=0.3)
            ax.grid(True, alpha=0.3)
            ax.set_xlabel('x')
            ax.set_ylabel('f(x)')
            ax.set_title(f'Graph of f(x) = {c} (Constant)')
            ax.legend()
    return fig

quadratic_visualizer_interface = gr.Interface(
    fn=plot_quadratic,
    inputs=[
        gr.Number(label="a (coefficient of x²)", value=1),
        gr.Number(label="b (coefficient of x)", value=0),
        gr.Number(label="c (constant)", value=0)
    ],
    outputs=gr.Plot(),
    title="Quadratic Function Visualizer",
    description="""
Visualize the graph of a quadratic function f(x) = ax² + bx + c, including its vertex and real roots (if any).

Example: For f(x) = x² - 4x + 3, enter a=1, b=-4, c=3.
""",
    examples=[
        [1, -4, 3],
        [2, 0, -8],
        [1, 2, 1]
    ]
)