Spaces:
Runtime error
Runtime error
feat: enhance Gradio interfaces for cubic, polynomial, quadratic, and simultaneous equation solvers with detailed descriptions and examples
Browse files
maths/equations/solve_cubic.py
CHANGED
@@ -42,5 +42,16 @@ cubic_solver_interface = gr.Interface(
|
|
42 |
],
|
43 |
outputs="text",
|
44 |
title="Cubic Equation Solver",
|
45 |
-
description="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
)
|
|
|
42 |
],
|
43 |
outputs="text",
|
44 |
title="Cubic Equation Solver",
|
45 |
+
description="""
|
46 |
+
Solve cubic equations of the form ax³ + bx² + cx + d = 0. Enter the coefficients for your cubic equation.
|
47 |
+
|
48 |
+
Example: For x³ - 6x² + 11x - 6 = 0, enter a=1, b=-6, c=11, d=-6.
|
49 |
+
|
50 |
+
Returns all real and complex roots.
|
51 |
+
""",
|
52 |
+
examples=[
|
53 |
+
[1, -6, 11, -6],
|
54 |
+
[2, 0, -4, 2],
|
55 |
+
[1, 0, 0, -8]
|
56 |
+
]
|
57 |
)
|
maths/equations/solve_poly.py
CHANGED
@@ -37,5 +37,16 @@ poly_solver_interface = gr.Interface(
|
|
37 |
inputs=gr.Textbox(label="Coefficients (comma-separated, highest degree first)", placeholder="e.g. 1, 0, -2, -8"),
|
38 |
outputs="text",
|
39 |
title="Polynomial Equation Solver",
|
40 |
-
description="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
)
|
|
|
37 |
inputs=gr.Textbox(label="Coefficients (comma-separated, highest degree first)", placeholder="e.g. 1, 0, -2, -8"),
|
38 |
outputs="text",
|
39 |
title="Polynomial Equation Solver",
|
40 |
+
description="""
|
41 |
+
Find roots of any polynomial equation. Enter the coefficients separated by commas, starting with the highest degree.
|
42 |
+
|
43 |
+
Example: For x⁴ - 2x² - 8 = 0, enter: 1, 0, -2, 0, -8
|
44 |
+
|
45 |
+
Supports real and complex roots for polynomials of any degree.
|
46 |
+
""",
|
47 |
+
examples=[
|
48 |
+
["1, 0, -2, 0, -8"],
|
49 |
+
["2, -3, 0, 1"],
|
50 |
+
["1, -6, 11, -6"]
|
51 |
+
]
|
52 |
)
|
maths/equations/solve_quadratic.py
CHANGED
@@ -104,7 +104,21 @@ solve_quadratic_interface = gr.Interface(
|
|
104 |
],
|
105 |
outputs="text",
|
106 |
title="Quadratic Equation Solver",
|
107 |
-
description="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
)
|
109 |
|
110 |
def plot_quadratic(a, b, c):
|
@@ -178,5 +192,14 @@ quadratic_visualizer_interface = gr.Interface(
|
|
178 |
],
|
179 |
outputs=gr.Plot(),
|
180 |
title="Quadratic Function Visualizer",
|
181 |
-
description="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
)
|
|
|
104 |
],
|
105 |
outputs="text",
|
106 |
title="Quadratic Equation Solver",
|
107 |
+
description="""
|
108 |
+
Solve ax² + bx + c = 0 and find the vertex. Enter the coefficients for your quadratic equation and select the output format.
|
109 |
+
|
110 |
+
Example: For x² - 3x + 2 = 0, enter a=1, b=-3, c=2.
|
111 |
+
|
112 |
+
Output format:
|
113 |
+
- 'string': plain text
|
114 |
+
- 'dict': formatted output
|
115 |
+
- 'surd': exact roots (if possible)
|
116 |
+
""",
|
117 |
+
examples=[
|
118 |
+
[1, -3, 2, "dict"],
|
119 |
+
[2, 4, -6, "string"],
|
120 |
+
[1, 2, 1, "surd"]
|
121 |
+
]
|
122 |
)
|
123 |
|
124 |
def plot_quadratic(a, b, c):
|
|
|
192 |
],
|
193 |
outputs=gr.Plot(),
|
194 |
title="Quadratic Function Visualizer",
|
195 |
+
description="""
|
196 |
+
Visualize the graph of a quadratic function f(x) = ax² + bx + c, including its vertex and real roots (if any).
|
197 |
+
|
198 |
+
Example: For f(x) = x² - 4x + 3, enter a=1, b=-4, c=3.
|
199 |
+
""",
|
200 |
+
examples=[
|
201 |
+
[1, -4, 3],
|
202 |
+
[2, 0, -8],
|
203 |
+
[1, 2, 1]
|
204 |
+
]
|
205 |
)
|
maths/equations/solve_simultaneous.py
CHANGED
@@ -31,5 +31,12 @@ simultaneous_solver_interface = gr.Interface(
|
|
31 |
],
|
32 |
outputs="text",
|
33 |
title="Simultaneous Linear Equation Solver",
|
34 |
-
description="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
)
|
|
|
31 |
],
|
32 |
outputs="text",
|
33 |
title="Simultaneous Linear Equation Solver",
|
34 |
+
description="""
|
35 |
+
Solve systems of simultaneous linear equations. Enter the coefficients for each equation (one per line, comma-separated) and the constants (right-hand side values).\n\nExample: For the system\n\n x + 2y = 5\n 3x + 4y = 6\n\nEnter coefficients:\n1,2\n3,4\n\nEnter constants:\n5,6
|
36 |
+
""",
|
37 |
+
examples=[
|
38 |
+
["1,2\n3,4", "5,6"],
|
39 |
+
["2,1\n1,3", "8,13"],
|
40 |
+
["1,1,1\n2,3,4\n1,2,3", "6,20,14"]
|
41 |
+
]
|
42 |
)
|