Spaces:
Runtime error
Runtime error
File size: 47,076 Bytes
d271024 5992e45 6a1ad3d 42498c8 57af320 a9bcab4 6a1ad3d 42498c8 5992e45 42498c8 0e69073 42498c8 5992e45 42498c8 5992e45 c3defd0 42498c8 c06a7b5 42498c8 c06a7b5 42498c8 c3defd0 42498c8 57af320 b8b2aff d271024 bd6ff84 212150e 5992e45 794990b 8663068 c9f0eb5 8663068 c3defd0 6a1ad3d c3defd0 6a1ad3d c3defd0 8663068 5992e45 e287f80 5992e45 e287f80 c06a7b5 5992e45 57af320 42498c8 5992e45 9b58257 ef17b20 9b58257 8663068 9b58257 8663068 d271024 8663068 11d7bdc fe2bb7c d9db98e 11d7bdc fe2bb7c 11d7bdc 57af320 11d7bdc 42498c8 11d7bdc 42498c8 11d7bdc 42498c8 11d7bdc 42498c8 d9db98e 9b58257 11d7bdc d9db98e 9b58257 d9db98e 9b58257 d9db98e fe2bb7c 11d7bdc d9db98e b8b2aff d9db98e b8b2aff d9db98e b8b2aff d9db98e fe2bb7c cdc62bb d9db98e cdc62bb fe2bb7c 8663068 fe2bb7c 0e69073 42498c8 5992e45 fe2bb7c afcd995 42498c8 a9bcab4 42498c8 fe2bb7c cdc62bb ef17b20 11d7bdc cdc62bb 6a1ad3d 11d7bdc ef17b20 6a1ad3d e11925e 6a1ad3d e11925e 6a1ad3d ef17b20 11d7bdc 794990b e287f80 fe2bb7c 794990b 11d7bdc 99b802e 794990b 11d7bdc 794990b 11d7bdc 794990b 11d7bdc 6a1ad3d 11d7bdc 6a1ad3d 57af320 e287f80 57af320 e287f80 57af320 e287f80 57af320 e287f80 57af320 11d7bdc 6a1ad3d 57af320 e287f80 57af320 6a1ad3d 11d7bdc 57af320 e287f80 57af320 e287f80 57af320 e287f80 11d7bdc e287f80 11d7bdc e287f80 57af320 11d7bdc fe2bb7c 11d7bdc fe2bb7c e287f80 11d7bdc fe2bb7c 11d7bdc 57af320 e287f80 11d7bdc e287f80 11d7bdc e287f80 11d7bdc 6a1ad3d 11d7bdc 6a1ad3d fe2bb7c 11d7bdc ef17b20 212150e ef17b20 e11925e 212150e ef17b20 212150e e11925e 11d7bdc ef17b20 42498c8 9b58257 42498c8 9b58257 42498c8 8663068 42498c8 868aac5 42498c8 868aac5 42498c8 868aac5 42498c8 868aac5 42498c8 868aac5 42498c8 5992e45 212150e 11d7bdc 9b58257 e11925e 42498c8 11d7bdc e11925e d271024 11d7bdc 6a1ad3d d9db98e 42498c8 d9db98e 6a1ad3d 11d7bdc 42498c8 11d7bdc 42498c8 11d7bdc d9db98e cdc62bb 6a1ad3d 5992e45 d271024 f21c09d d271024 c06a7b5 5992e45 c06a7b5 5992e45 e11925e 6a1ad3d 11d7bdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 |
import logging
import os
import uuid
import aiohttp
import json
import httpx
from typing import Annotated
from typing import TypedDict, List, Optional, Literal
from typing_extensions import TypedDict
from pydantic import BaseModel, Field
from trafilatura import extract
from langchain_core.messages import AIMessage, HumanMessage, AnyMessage, ToolCall, SystemMessage, ToolMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.tools import tool
from langchain_community.tools import TavilySearchResults
from langgraph.graph.state import CompiledStateGraph
from langgraph.graph import StateGraph, START, END, add_messages
from langgraph.prebuilt import ToolNode
from langgraph.prebuilt import ToolNode, tools_condition
from langgraph.checkpoint.memory import MemorySaver
from langgraph.types import Command, interrupt
from langchain_anthropic import ChatAnthropic
from langchain_openai import ChatOpenAI
from mistralai import Mistral
from langchain.chat_models import init_chat_model
from langchain_core.messages.utils import convert_to_openai_messages
class State(TypedDict):
messages: Annotated[list, add_messages]
class DebugToolNode(ToolNode):
async def invoke(self, state, config=None):
print("π οΈ ToolNode activated")
print(f"Available tools: {[tool.name for tool in self.tool_map.values()]}")
print(f"Tool calls in last message: {state.messages[-1].tool_calls}")
return await super().invoke(state, config)
logger = logging.getLogger(__name__)
ASSISTANT_SYSTEM_PROMPT_BASE = """"""
search_enabled = bool(os.environ.get("TAVILY_API_KEY"))
try:
with open('brainstorming_system_prompt.txt', 'r') as file:
brainstorming_system_prompt = file.read()
except FileNotFoundError:
print("File 'system_prompt.txt' not found!")
except Exception as e:
print(f"Error reading file: {e}")
def evaluate_idea_completion(response) -> bool:
"""
Evaluates whether the assistant's response indicates a complete DIY project idea.
You can customize the logic based on your specific criteria.
"""
# Example logic: Check if the response contains certain keywords
required_keywords = ["materials", "dimensions", "tools", "steps"]
# Determine the type of response and extract text accordingly
if isinstance(response, dict):
# If response is a dictionary, extract values and join them into a single string
response_text = ' '.join(str(value).lower() for value in response.values())
elif isinstance(response, str):
# If response is a string, convert it to lowercase
response_text = response.lower()
else:
# If response is of an unexpected type, convert it to string and lowercase
response_text = str(response).lower()
return all(keyword in response_text for keyword in required_keywords)
@tool
async def human_assistance(query: str) -> str:
"""Request assistance from a human."""
human_response = await interrupt({"query": query}) # async wait
return human_response["data"]
@tool
async def download_website_text(url: str) -> str:
"""Download the text from a website"""
try:
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
response.raise_for_status()
downloaded = await response.text()
result = extract(downloaded, include_formatting=True, include_links=True, output_format='json', with_metadata=True)
return result or "No text found on the website"
except Exception as e:
logger.error(f"Failed to download {url}: {str(e)}")
return f"Error retrieving website content: {str(e)}"
@tool
async def finalize_idea() -> str:
"""Marks the brainstorming phase as complete. This function does nothing else."""
return "Brainstorming finalized."
tools = [download_website_text, human_assistance,finalize_idea]
memory = MemorySaver()
if search_enabled:
tavily_search_tool = TavilySearchResults(
max_results=5,
search_depth="advanced",
include_answer=True,
include_raw_content=True,
)
tools.append(tavily_search_tool)
else:
print("TAVILY_API_KEY environment variable not found. Websearch disabled")
weak_model = ChatOpenAI(
model="gpt-4o",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
# api_key="...", # if you prefer to pass api key in directly instaed of using env vars
# base_url="...",
# organization="...",
# other params...
)
api_key = os.environ["MISTRAL_API_KEY"]
model = "mistral-large-latest"
client = Mistral(api_key=api_key)
# ChatAnthropic(
# model="claude-3-5-sonnet-20240620",
# temperature=0,
# max_tokens=1024,
# timeout=None,
# max_retries=2,
# # other params...
# )
search_enabled = bool(os.environ.get("TAVILY_API_KEY"))
if not os.environ.get("OPENAI_API_KEY"):
print('Open API key not found')
prompt_planning_model = ChatOpenAI(
model="gpt-4o",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
# api_key="...", # if you prefer to pass api key in directly instaed of using env vars
# base_url="...",
# organization="...",
# other params...
)
threed_object_gen_model = ChatOpenAI(
model="gpt-4o",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
# api_key="...", # if you prefer to pass api key in directly instaed of using env vars
# base_url="...",
# organization="...",
# other params...
)
model = weak_model
assistant_model = weak_model
class GraphProcessingState(BaseModel):
# user_input: str = Field(default_factory=str, description="The original user input")
messages: Annotated[list[AnyMessage], add_messages] = Field(default_factory=list)
prompt: str = Field(default_factory=str, description="The prompt to be used for the model")
tools_enabled: dict = Field(default_factory=dict, description="The tools enabled for the assistant")
search_enabled: bool = Field(default=True, description="Whether to enable search tools")
next_stage: str = Field(default="", description="The next stage to execute, decided by the guidance node.")
tool_call_required: bool = Field(default=False, description="Whether a tool should be called from brainstorming.")
loop_brainstorming: bool = Field(default=False, description="Whether to loop back to brainstorming for further iteration.")
# Completion flags for each stage
idea_complete: bool = Field(default=False)
brainstorming_complete: bool = Field(default=False)
planning_complete: bool = Field(default=False)
drawing_complete: bool = Field(default=False)
product_searching_complete: bool = Field(default=False)
purchasing_complete: bool = Field(default=False)
async def guidance_node(state: GraphProcessingState, config=None):
print("\n--- Guidance Node (Debug via print) ---\n") # Added a newline for clarity
print(f"Prompt: {state.prompt}")
print(f"Prompt: {state.prompt}")
# print(f"Message: {state.messages}")
print(f"Tools Enabled: {state.tools_enabled}")
print(f"Search Enabled: {state.search_enabled}")
for message in state.messages:
print(f'\ncomplete message', message)
if isinstance(message, HumanMessage):
print(f"Human: {message.content}\n")
elif isinstance(message, AIMessage):
# Check if content is non-empty
if message.content:
# If content is a list (e.g., list of dicts), extract text
if isinstance(message.content, list):
texts = [item.get('text', '') for item in message.content if isinstance(item, dict) and 'text' in item]
if texts:
print(f"AI: {' '.join(texts)}\n")
elif isinstance(message.content, str):
print(f"AI: {message.content}")
elif isinstance(message, SystemMessage):
print(f"System: {message.content}\n")
elif isinstance(message, ToolMessage):
print(f"Tool: {message.content}\n")
# Log boolean completion flags
# Define the order of stages
stage_order = ["brainstorming", "planning", "drawing", "product_searching", "purchasing"]
# Identify completed and incomplete stages
completed = [stage for stage in stage_order if getattr(state, f"{stage}_complete", False)]
incomplete = [stage for stage in stage_order if not getattr(state, f"{stage}_complete", False)]
# Determine the next stage
if not incomplete:
# All stages are complete
return {
"messages": [AIMessage(content="All DIY project stages are complete!")],
"next_stage": "end_project",
"pending_approval_stage": None,
}
else:
# Set the next stage to the first incomplete stage
next_stage = incomplete[0]
print(f"Next Stage: {state.next_stage}")
print("\n--- End of Guidance Node Debug ---\n")
return {
"messages": [],
"next_stage": next_stage,
"pending_approval_stage": None,
}
def guidance_routing(state: GraphProcessingState) -> str:
print("\n--- Guidance Routing (Debug via print) ---\n") # Added a newline for clarity
print(f"Next Stage: {state.next_stage}\n")
print(f"Brainstorming complete: {state.brainstorming_complete}")
print(f"3D prompt: {state.planning_complete}")
print(f"Drwaing 3d model: {state.drawing_complete}")
print(f"Finding products: {state.product_searching_complete}\n")
next_stage = state.next_stage
if next_stage == "brainstorming":
return "brainstorming_node"
elif next_stage == "planning":
return "generate_3d_node"
# return "prompt_planning_node"
elif next_stage == "drawing":
print('\n may day may day may day may day may day')
# return "generate_3d_node"
elif next_stage == "product_searching":
print('\n may day may day may day may day may day')
# return "drawing_node"
# elif next_stage == "product_searching":
# return "product_searching"
# elif next_stage == "purchasing":
# return "purchasing_node"
return END
async def brainstorming_node(state: GraphProcessingState, config=None):
print("\n--- brainstorming Node (Debug via print) ---\n") # Added a newline for clarity
print(f"Tools Enabled: {state.tools_enabled}")
print(f"Search Enabled: {state.search_enabled}")
print(f"Next Stage: {state.next_stage}")
# Log boolean completion flags
print(f"is Brainstorming Complete: {state.brainstorming_complete}")
# Check if model is available
if not model:
return {"messages": [AIMessage(content="Model not available for brainstorming.")]}
# Filter out messages with empty content
filtered_messages = [
message for message in state.messages
if isinstance(message, (HumanMessage, AIMessage, SystemMessage, ToolMessage)) and message.content
]
# Ensure there is at least one message with content
if not filtered_messages:
filtered_messages.append(AIMessage(content="No valid messages provided."))
stage_order = ["brainstorming", "planning", "drawing", "product_searching", "purchasing"]
completed = [stage for stage in stage_order if getattr(state, f"{stage}_complete", False)]
incomplete = [stage for stage in stage_order if not getattr(state, f"{stage}_complete", False)]
if not incomplete:
print("All stages complete!")
# Handle case where all stages are complete
# You might want to return a message and end, or set proposed_next_stage to a special value
ai_all_complete_msg = AIMessage(content="All DIY project stages are complete!")
return {
"messages": current_messages + [ai_all_complete_msg],
"next_stage": "end_project", # Or None, or a final summary node
"pending_approval_stage": None,
}
else:
# THIS LINE DEFINES THE VARIABLE
proposed_next_stage = incomplete[0]
guidance_prompt_text = (
"""
You are a creative and helpful AI assistant acting as a **DIY Project Brainstorming Facilitator**. Your primary goal is to collaborate with the user to finalize **ONE specific, viable DIY project idea** as efficiently and quickly as possible.
β οΈ If you identify any idea that clearly meets ALL **Critical Criteria** and the user appears positive or neutral, you must finalize it **immediately** β even if it is the very first idea proposed. Do NOT delay finalization by over-analyzing or seeking excessive confirmation.
> Your goal is NOT to perfect the idea or generate many options. Instead, **converge rapidly on a βgood enoughβ final idea** that the user can confidently pursue.
**Critical Criteria for the Final DIY Project Idea (MUST be met):**
1. **Buildable:** Achievable by an average person with basic DIY skills.
2. **Common Materials/Tools:** Uses only materials (e.g., wood, screws, glue, paint, fabric, cardboard) and basic hand tools (e.g., screwdrivers, hammers, saws, drills) commonly available in general hardware stores, craft stores, or supermarkets worldwide.
3. **Avoid Specializations:** Explicitly AVOID projects requiring specialized electronic components, 3D printing, specific brand items not universally available, or complex machinery.
4. **Tangible Product:** The final result must be a physical, tangible item.
**Your Process for Each Brainstorming Interaction Cycle:**
1. **THOUGHT:**
* Clearly state your understanding of the userβs current input or the brainstorming state (e.g., "User is seeking initial ideas," "User proposed an idea needing refinement," "We are close to finalizing an idea.").
* Outline your plan for this turn:
* Engage with the user's latest input.
* Propose or refine an idea to meet **Critical Criteria**.
* Decide if you need to ask the user a clarifying question.
* **Tool Identification (`human_assistance`):** If a question is needed for:
* Understanding user interests or skill level.
* Clarifying preferences.
* Getting feedback on a proposed idea.
* Refining the idea to meet criteria.
Clearly state your intention to use the `human_assistance` tool with the exact question as the `query`.
* **Idea Finalization Check:**
* Immediately check if the current idea satisfies ALL **Critical Criteria**.
* If yes, and the user shows no objection, **finalize immediately without waiting for multiple iterations**.
* Prioritize minimal iterations: finalize an idea at the earliest confident point.
* Remember: **good enough is final enough** β do not delay finalization.
2. **TOOL USE (`human_assistance` - If Needed):**
* If a question is necessary, invoke `human_assistance` with your formulated query.
* (Note: The system will execute your tool call.)
3. **RESPONSE SYNTHESIS / IDEA FINALIZATION:**
* After any tool use (or if no tool was needed), synthesize your response.
* **If an idea is finalized:** respond *only* with the exact phrase:
`IDEA FINALIZED: [Name of the Idea]`
(e.g., `IDEA FINALIZED: Simple Wooden Spice Rack`)
Do NOT add extra text.
This signals the end of brainstorming.
* **If brainstorming continues:**
* Provide engaging suggestions or refinements.
* If you just called `human_assistance`, your main output may be the tool call or a brief lead-in.
* Await user response before proceeding.
**General Guidelines:**
* **Collaborative & Iterative:** Work *with* the user; this is a conversation.
* **Criteria Focused:** Gently guide ideas toward ALL **Critical Criteria**.
* **One Main Idea at a Time:** Avoid confusion by focusing discussion on a single project idea or comparable alternatives.
* **User-Centric:** Help the user find a project *they* will be happy with.
* **Clarity:** Be clear and direct.
* **Tool Protocol:** Use `human_assistance` correctly; do not answer your own questions.
* **Rapid Convergence:** Prioritize **finalizing quickly** once criteria are met; avoid endless brainstorming or perfectionism.
"""
)
if state.prompt:
final_prompt = "\n".join([ guidance_prompt_text, state.prompt, ASSISTANT_SYSTEM_PROMPT_BASE])
else:
final_prompt = "\n".join([ guidance_prompt_text, ASSISTANT_SYSTEM_PROMPT_BASE])
prompt = ChatPromptTemplate.from_messages(
[
("system", final_prompt),
MessagesPlaceholder(variable_name="messages"),
]
)
# Tools allowed for brainstorming
node_tools = [human_assistance]
if state.search_enabled and tavily_search_tool: # only add search tool if enabled and initialized
node_tools.append(tavily_search_tool)
mistraltools = [
{
"type": "function",
"function": {
"name": "human_assistance",
"description": "Ask a question from the user",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"query": "The transaction id.",
}
},
"required": ["query"],
},
},
},
{
"type": "function",
"function": {
"name": "finalize_idea",
"description": "Handles finalized ideas. Saves or dispatches the confirmed idea for the next steps. but make sure you give your response with key word IDEA FINALIZED",
"parameters": {
"type": "object",
"properties": {
"idea_name": {
"type": "string",
"description": "The name of the finalized DIY idea.",
}
},
"required": ["idea_name"]
}
}
}
]
llm = init_chat_model("mistral-large-latest", model_provider="mistralai")
llm_with_tools = llm.bind_tools(mistraltools)
chain = prompt | llm_with_tools
openai_messages = convert_to_openai_messages(state.messages)
print('open ai format messaage', openai_messages)
openai_messages_with_prompt = [
{"role": "system", "content": final_prompt}, # your guidance prompt
*openai_messages # history youβve already converted
]
print('open ai format messaage', openai_messages_with_prompt)
mistralmodel = "mistral-large-latest"
# Pass filtered messages to the chain
try:
# response = await chain.ainvoke({"messages": filtered_messages}, config=config)
response = client.chat.complete(
model = mistralmodel,
messages = openai_messages_with_prompt,
tools = mistraltools,
tool_choice = "any",
parallel_tool_calls = False,
)
mistral_message = response.choices[0].message
tool_call = response.choices[0].message.tool_calls[0]
function_name = tool_call.function.name
function_params = json.loads(tool_call.function.arguments)
ai_message = AIMessage(
content=mistral_message.content or "", # Use empty string if blank
additional_kwargs={
"tool_calls": [
{
"id": tool_call.id,
"function": {
"name": tool_call.function.name,
"arguments": tool_call.function.arguments,
},
"type": "function", # Add this if your chain expects it
}
]
}
)
updates = {
"messages": [ai_message],
"tool_calls": [
{
"name": function_name,
"arguments": function_params,
}
],
"next": function_name,
}
print("\nfunction_name: ", function_name, "\nfunction_params: ", function_params)
print(' π response from brainstorm', updates)
if function_name == "finalize_idea":
print('came in π΄π΄π΄π΄π΄')
state.brainstorming_complete = True
updates["brainstorming_complete"] = True
if isinstance(response, AIMessage) and response.content:
print(' ππ came inside the loop', response)
if isinstance(response.content, str):
content = response.content.strip()
elif isinstance(response.content, list):
texts = [item.get("text", "") for item in response.content if isinstance(item, dict)]
content = " ".join(texts).strip()
else:
content = str(response.content).strip()
print('content for idea finalizing:', content)
if "finalize_idea:" in content: # Use 'in' instead of 'startswith'
print('β
final idea')
updates.update({
"brainstorming_complete": True,
"tool_call_required": False,
"loop_brainstorming": False,
})
return updates
else:
# tool_calls = getattr(response, "tool_calls", None)
if tool_call:
print('π οΈ tool call requested')
updates.update({
"tool_call_required": True,
"loop_brainstorming": False,
})
if tool_call:
tool_call = response.choices[0].message.tool_calls[0]
function_name = tool_call.function.name
function_params = json.loads(tool_call.function.arguments)
print("\nfunction_name: ", function_name, "\nfunction_params: ", function_params)
# for tool_call in response.tool_calls:
# tool_name = tool_call['name']
# if tool_name == "human_assistance":
# query = tool_call['args']['query']
# print(f"Human input needed: {query}")
# for tool_call in tool_calls:
# if isinstance(tool_call, dict) and 'name' in tool_call and 'args' in tool_call:
# print(f"π§ Tool Call (Dict): {tool_call.get('name')}, Args: {tool_call.get('args')}")
# else:
# print(f"π§ Unknown tool_call format: {tool_call}")
else:
print('π¬ keep brainstorming')
updates.update({
"tool_call_required": False,
"loop_brainstorming": True,
})
print(f"Brainstorming continues: {content}")
else:
# If no proper response, keep looping brainstorming
updates["tool_call_required"] = False
updates["loop_brainstorming"] = True
print("\n--- End Brainstorming Node Debug ---\n")
return updates
except Exception as e:
print(f"Error in guidance node: {e}")
return {
"messages": [AIMessage(content="Error in guidance node.")],
"next_stage": "brainstorming"
}
def brainstorming_routing(state: GraphProcessingState) -> str:
print("\n--- brainstorming_routing Edge (Debug via print) ---") # Added a newline for clarity
print(f"Prompt: {state.prompt}")
# print(f"Message: {state.messages}")
print(f"Tools called: {state.tool_call_required}")
print(f"Search Enabled: {state.search_enabled}")
print(f"Next Stage: {state.next_stage}")
# Log boolean completion flags
print(f"Idea Complete: {state.idea_complete}")
print(f"Brainstorming Complete: {state.brainstorming_complete}")
print(f"Planning Complete: {state.planning_complete}")
print(f"Drawing Complete: {state.drawing_complete}")
print(f"Product Searching Complete: {state.product_searching_complete}")
print(f"Purchasing Complete: {state.purchasing_complete}")
print("--- End Guidance Node Debug ---") # Added for clarity
if state.tool_call_required:
print('calling tools for brainstorming')
return "tools"
elif state.loop_brainstorming:
print('returning back to brainstorming at the route')
return "brainstorming_node"
else:
print('all good in brainstorming route going back to guidance')
return "guidance_node"
# def route_brainstorming(state):
# if state.get("tool_call_required"):
# return "tools"
# else:
# return "guidance_node"
async def prompt_planning_node(state: GraphProcessingState, config=None):
print("\n--- prompt_planning Node (Debug) ---\n")
print(f"Tools Enabled: {state.tools_enabled}")
print(f"Search Enabled: {state.search_enabled}")
print(f"Planning Complete: {state.planning_complete}")
# Ensure we have a model
if not model:
return {"messages": [AIMessage(content="Model not available for planning.")]}
# Filter out empty messages
filtered_messages = [
msg for msg in state.messages
if isinstance(msg, (HumanMessage, AIMessage, SystemMessage, ToolMessage)) and msg.content
]
if not filtered_messages:
filtered_messages.append(AIMessage(content="No valid messages provided."))
# Define the system prompt for planning
guidance_prompt_text = """
You are a creative and helpful AI assistant acting as a **DIY Project Brainstorming & 3D-Prompt Generator**. Your mission is to collaborate with the user to:
1. Brainstorm and refine one specific, viable DIY project idea.
2. Identify the single key component from that idea that should be 3D-modeled.
3. Produce a final, precise text prompt for an OpenAI 3D-generation endpoint.
---
**Critical Criteria for the DIY Project** (must be met):
β’ Buildable by an average person with only basic DIY skills.
β’ Uses common materials/tools (e.g., wood, screws, glue, paint; hammer, saw, drill).
β’ No specialized electronics, 3D printers, or proprietary parts.
β’ Results in a tangible, physical item.
---
**Available Tools**
β’ human_assistance β ask the user clarifying questions.
β’ (optional) your project-specific search tool β look up inspiration or standard dimensions if needed.
---
**When the DIY idea is fully detailed and meets all criteria, output exactly and only:**
ACCURATE PROMPT FOR MODEL GENERATING: [Your final single-paragraph prompt here]
"""
# Build final prompt
if state.prompt:
final_prompt = "\n".join([guidance_prompt_text, state.prompt, ASSISTANT_SYSTEM_PROMPT_BASE])
else:
final_prompt = "\n".join([guidance_prompt_text, ASSISTANT_SYSTEM_PROMPT_BASE])
prompt = ChatPromptTemplate.from_messages([
("system", final_prompt),
MessagesPlaceholder(variable_name="messages"),
])
# Bind tools
node_tools = [human_assistance]
if state.search_enabled and tavily_search_tool:
node_tools.append(tavily_search_tool)
llm_with_tools = prompt_planning_model.bind_tools(node_tools)
chain = prompt | llm_with_tools
try:
response = await chain.ainvoke({"messages": filtered_messages}, config=config)
# Log any required human assistance query
if hasattr(response, "tool_calls"):
for call in response.tool_calls:
if call.get("name") == "human_assistance":
print(f"Human input needed: {call['args']['query']}")
updates = {"messages": [response]}
# Extract response text
content = ""
if isinstance(response.content, str):
content = response.content.strip()
elif isinstance(response.content, list):
content = " ".join(item.get("text","") for item in response.content if isinstance(item, dict)).strip()
# Check for finalization signal
if content.startswith("ACCURATE PROMPT FOR MODEL GENERATING:"):
updates.update({
"planning_complete": True,
"tool_call_required": False,
"loop_planning": False,
})
else:
# Check if a tool call was requested
if getattr(response, "tool_calls", None):
updates.update({
"tool_call_required": True,
"loop_planning": False,
})
else:
updates.update({
"tool_call_required": False,
"loop_planning": True,
})
print("\n--- End prompt_planning Node Debug ---\n")
return updates
except Exception as e:
print(f"Error in prompt_planning node: {e}")
return {
"messages": [AIMessage(content="Error in prompt_planning node.")],
"next_stage": state.next_stage or "planning"
}
async def generate_3d_node(state: GraphProcessingState, config=None):
print("\n-πππ-- Generate 3D via API Node ---πππ\n")
# 1. Get the image URL
# For now, using a hardcoded URL as requested for testing.
# In a real scenario, you might get this from the state:
# image_url = state.get("image_url_for_3d")
# if not image_url:
# print("No image_url_for_3d found in state.")
# return {"messages": [AIMessage(content="No image URL found for 3D generation.")]}
hardcoded_image_url = "https://images.unsplash.com/photo-1748973750733-d037dded16dd?q=80&w=1974&auto=format&fit=crop&ixlib=rb-4.1.0&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D"
print(f"Using hardcoded image_url: {hardcoded_image_url}")
# 2. Define API endpoint and parameters
api_base_url = "https://wishwa-code--trellis-3d-model-generate-dev.modal.run/"
params = {
"image_url": hardcoded_image_url,
"simplify": "0.95",
"texture_size": "1024",
"sparse_sampling_steps": "12",
"sparse_sampling_cfg": "7.5",
"slat_sampling_steps": "12",
"slat_sampling_cfg": "3",
"seed": "42",
"output_format": "glb"
}
# Create a directory to store generated models if it doesn't exist
output_dir = "generated_3d_models"
os.makedirs(output_dir, exist_ok=True)
# 3. Attempt generation with retries
for attempt in range(1, 2):
print(f"Attempt {attempt} to call 3D generation API...")
try:
# Note: The API call can take a long time (1.5 mins in your curl example)
# Ensure your HTTP client timeout is sufficient.
# httpx default timeout is 5 seconds, which is too short.
async with httpx.AsyncClient(timeout=120.0) as client: # Timeout set to 120 seconds
response = await client.get(api_base_url, params=params)
response.raise_for_status() # Raises an HTTPStatusError for 4XX/5XX responses
# Successfully got a response
if response.status_code == 200:
# Assuming the response body is the .glb file content
file_name = f"model_{uuid.uuid4()}.glb"
file_path = os.path.join(output_dir, file_name)
with open(file_path, "wb") as f:
f.write(response.content)
print(f"Success: 3D model saved to {file_path}")
return {
"messages": [AIMessage(content=f"3D object generation successful: {file_path}")],
"generate_3d_complete": True,
"three_d_model_path": file_path,
"next_stage": state.get("next_stage") or 'end' # Use .get for safer access
}
else:
# This case might not be reached if raise_for_status() is used effectively,
# but good for explicit handling.
error_message = f"API returned status {response.status_code}: {response.text}"
print(error_message)
if attempt == 3: # Last attempt
return {"messages": [AIMessage(content=f"Failed to generate 3D object. Last error: {error_message}")]}
except httpx.HTTPStatusError as e:
error_message = f"HTTP error occurred: {e.response.status_code} - {e.response.text}"
print(error_message)
if attempt == 3:
return {"messages": [AIMessage(content=f"Failed to generate 3D object after 3 attempts. Last HTTP error: {error_message}")]}
except httpx.RequestError as e: # Catches network errors, timeout errors etc.
error_message = f"Request error occurred: {str(e)}"
print(error_message)
if attempt == 3:
return {"messages": [AIMessage(content=f"Failed to generate 3D object after 3 attempts. Last request error: {error_message}")]}
except Exception as e:
error_message = f"An unexpected error occurred: {str(e)}"
print(error_message)
if attempt == 3:
return {"messages": [AIMessage(content=f"Failed to generate 3D object after 3 attempts. Last unexpected error: {error_message}")]}
if attempt < 2:
print("Retrying...")
else:
print("Max retries reached.")
# Failed after retries (this path should ideally be covered by returns in the loop)
return {"messages": [AIMessage(content="Failed to generate a valid 3D object after 3 attempts.")]}
def define_workflow() -> CompiledStateGraph:
"""Defines the workflow graph"""
# Initialize the graph
workflow = StateGraph(GraphProcessingState)
# Add nodes
workflow.add_node("tools", DebugToolNode(tools))
workflow.add_node("guidance_node", guidance_node)
workflow.add_node("brainstorming_node", brainstorming_node)
workflow.add_node("prompt_planning_node", prompt_planning_node)
workflow.add_node("generate_3d_node", generate_3d_node)
# workflow.add_node("planning_node", planning_node)
# Edges
workflow.add_conditional_edges(
"guidance_node",
guidance_routing,
{
"brainstorming_node" : "brainstorming_node",
"prompt_planning_node" : "prompt_planning_node",
"generate_3d_node" : "generate_3d_node"
}
)
workflow.add_conditional_edges(
"brainstorming_node",
tools_condition,
)
workflow.add_conditional_edges(
"prompt_planning_node",
tools_condition,
)
workflow.add_edge("tools", "guidance_node")
workflow.add_edge("brainstorming_node", "guidance_node")
workflow.add_edge("prompt_planning_node", "guidance_node")
workflow.add_edge("generate_3d_node", "guidance_node")
# workflow.add_conditional_edges(
# "guidance_node", # The source node
# custom_route_after_guidance, # Your custom condition function
# {
# # "Path name": "Destination node name"
# "execute_tools": "tools", # If function returns "execute_tools"
# "proceed_to_next_stage": "planning_node" # If function returns "proceed_to_next_stage"
# # Or this could be another router, or END
# }
# )
# workflow.add_conditional_edges("guidance_node", guidance_routing)
# workflow.add_conditional_edges("brainstorming_node", brainstorming_routing)
# # Set end nodes
workflow.set_entry_point("guidance_node")
# workflow.set_finish_point("assistant_node")
compiled_graph = workflow.compile(checkpointer=memory)
try:
img_bytes = compiled_graph.get_graph().draw_mermaid_png()
with open("graph.png", "wb") as f:
f.write(img_bytes)
print("Graph image saved as graph.png")
except Exception as e:
print("Can't print the graph:")
print(e)
return compiled_graph
graph = define_workflow()
# async def assistant_node(state: GraphProcessingState, config=None):
# print("\n--- Assistance Node (Debug via print) ---") # Added a newline for clarity
# print(f"Prompt: {state.prompt}")
# print(f"Tools Enabled: {state.tools_enabled}")
# print(f"Search Enabled: {state.search_enabled}")
# print(f"Next Stage: {state.next_stage}")
# # Log boolean completion flags
# print(f"Idea Complete: {state.idea_complete}")
# print(f"Brainstorming Complete: {state.brainstorming_complete}")
# print(f"Planning Complete: {state.planning_complete}")
# print(f"Drawing Complete: {state.drawing_complete}")
# print(f"Product Searching Complete: {state.product_searching_complete}")
# print(f"Purchasing Complete: {state.purchasing_complete}")
# print("--- End Guidance Node Debug ---") # Added for clarity
# print(f"\nMessage: {state.messages}")
# assistant_tools = []
# if state.tools_enabled.get("download_website_text", True):
# assistant_tools.append(download_website_text)
# if search_enabled and state.tools_enabled.get("tavily_search_results_json", True):
# assistant_tools.append(tavily_search_tool)
# assistant_model = model.bind_tools(assistant_tools)
# if state.prompt:
# final_prompt = "\n".join([state.prompt, ASSISTANT_SYSTEM_PROMPT_BASE])
# else:
# final_prompt = ASSISTANT_SYSTEM_PROMPT_BASE
# prompt = ChatPromptTemplate.from_messages(
# [
# ("system", final_prompt),
# MessagesPlaceholder(variable_name="messages"),
# ]
# )
# chain = prompt | assistant_model
# response = await chain.ainvoke({"messages": state.messages}, config=config)
# for msg in response:
# if isinstance(msg, HumanMessage):
# print("Human:", msg.content)
# elif isinstance(msg, AIMessage):
# if isinstance(msg.content, list):
# ai_texts = [part.get("text", "") for part in msg.content if isinstance(part, dict)]
# print("AI:", " ".join(ai_texts))
# else:
# print("AI:", msg.content)
# idea_complete = evaluate_idea_completion(response)
# return {
# "messages": response,
# "idea_complete": idea_complete
# }
# # message = llm_with_tools.invoke(state["messages"])
# # Because we will be interrupting during tool execution,
# # we disable parallel tool calling to avoid repeating any
# # tool invocations when we resume.
# assert len(response.tool_calls) <= 1
# idea_complete = evaluate_idea_completion(response)
# return {
# "messages": response,
# "idea_complete": idea_complete
# }
#
# async def planning_node(state: GraphProcessingState, config=None):
# # Define the system prompt for planning
# planning_prompt = "Based on the user's idea, create a detailed step-by-step plan to build the DIY product."
# # Combine the planning prompt with any existing prompts
# if state.prompt:
# final_prompt = "\n".join([planning_prompt, state.prompt, ASSISTANT_SYSTEM_PROMPT_BASE])
# else:
# final_prompt = "\n".join([planning_prompt, ASSISTANT_SYSTEM_PROMPT_BASE])
# # Create the prompt template
# prompt = ChatPromptTemplate.from_messages(
# [
# ("system", final_prompt),
# MessagesPlaceholder(variable_name="messages"),
# ]
# )
# # Bind tools if necessary
# assistant_tools = []
# if state.tools_enabled.get("download_website_text", True):
# assistant_tools.append(download_website_text)
# if search_enabled and state.tools_enabled.get("tavily_search_results_json", True):
# assistant_tools.append(tavily_search_tool)
# assistant_model = model.bind_tools(assistant_tools)
# # Create the chain and invoke it
# chain = prompt | assistant_model
# response = await chain.ainvoke({"messages": state.messages}, config=config)
# return {
# "messages": response
# }
# async def guidance_node(state: GraphProcessingState, config=None):
# print("\n--- Guidance Node (Debug via print) ---")
# print(f"Prompt: {state.prompt}")
# for message in state.messages:
# if isinstance(message, HumanMessage):
# print(f"Human: {message.content}")
# elif isinstance(message, AIMessage):
# if message.content:
# if isinstance(message.content, list):
# texts = [item.get('text', '') for item in message.content if isinstance(item, dict) and 'text' in item]
# if texts:
# print(f"AI: {' '.join(texts)}")
# elif isinstance(message.content, str):
# print(f"AI: {message.content}")
# elif isinstance(message, SystemMessage):
# print(f"System: {message.content}")
# elif isinstance(message, ToolMessage):
# print(f"Tool: {message.content}")
# print(f"Tools Enabled: {state.tools_enabled}")
# print(f"Search Enabled: {state.search_enabled}")
# print(f"Next Stage: {state.next_stage}")
# print(f"Brainstorming Complete: {state.brainstorming_complete}")
# guidance_node.count = getattr(guidance_node, 'count', 0) + 1
# print('\nGuidance Node called count', guidance_node.count)
# print("\n--- End Guidance Node Debug ---")
# stage_order = ["brainstorming", "planning", "drawing", "product_searching", "purchasing"]
# completed = [stage for stage in stage_order if getattr(state, f"{stage}_complete", False)]
# incomplete = [stage for stage in stage_order if not getattr(state, f"{stage}_complete", False)]
# if not incomplete:
# print("All stages complete!")
# # Handle case where all stages are complete
# # You might want to return a message and end, or set proposed_next_stage to a special value
# ai_all_complete_msg = AIMessage(content="All DIY project stages are complete!")
# return {
# "messages": current_messages + [ai_all_complete_msg],
# "next_stage": "end_project", # Or None, or a final summary node
# "pending_approval_stage": None,
# }
# else:
# # THIS LINE DEFINES THE VARIABLE
# proposed_next_stage = incomplete[0]
# print(f"Proposed next stage: {proposed_next_stage}")
# status_summary = f"Completed stages: {completed}\nIncomplete stages: {incomplete}"
# guidance_prompt_text = (
# "You are the Guiding Assistant for a DIY project. Your primary responsibility is to determine the next logical step "
# "and then **obtain the user's explicit approval** before proceeding.\n\n"
# f"CURRENT PROJECT STATUS:\n{status_summary}\n\n"
# f"Based on the status, the most logical next stage appears to be: **'{proposed_next_stage}'**.\n\n"
# "YOUR TASK:\n"
# f"1. Formulate a clear and concise question for the user, asking if they agree to proceed to the **'{proposed_next_stage}'** stage. For example: 'It looks like '{proposed_next_stage}' is next. Shall we proceed with that?' or 'Are you ready to move on to {proposed_next_stage}?'\n"
# "2. **You MUST use the 'human_assistance' tool to ask this question.** Do not answer directly. Invoke the tool with your question.\n"
# "Example of tool usage (though you don't write this, you *call* the tool):\n"
# "Tool Call: human_assistance(query='The next stage is planning. Do you want to proceed with planning?')\n\n"
# "Consider the user's most recent message if it provides any preference."
# )
# if state.prompt:
# final_prompt = "\n".join([guidance_prompt_text, state.prompt, ASSISTANT_SYSTEM_PROMPT_BASE])
# else:
# final_prompt = "\n".join([guidance_prompt_text, ASSISTANT_SYSTEM_PROMPT_BASE])
# prompt = ChatPromptTemplate.from_messages(
# [
# ("system", final_prompt),
# MessagesPlaceholder(variable_name="messages"),
# ]
# )
# assistant_model = model.bind_tools([human_assistance])
# chain = prompt | assistant_model
# try:
# response = await chain.ainvoke({"messages": state.messages}, config=config)
# for msg in response:
# if isinstance(msg, HumanMessage):
# print("Human:", msg.content)
# elif isinstance(msg, AIMessage):
# if isinstance(msg.content, list):
# ai_texts = [part.get("text", "") for part in msg.content if isinstance(part, dict)]
# print("AI:", " ".join(ai_texts))
# else:
# print("AI:", msg.content)
# # Check for tool calls in the response
# if hasattr(response, "tool_calls"):
# for tool_call in response.tool_calls:
# tool_name = tool_call['name']
# if tool_name == "human_assistance":
# query = tool_call['args']['query']
# print(f"Human input needed: {query}")
# # Handle human assistance tool call
# # You can pause execution and wait for user input here
# return {
# "messages": [response],
# "next_stage": incomplete[0] if incomplete else "brainstorming"
# }
# except Exception as e:
# print(f"Error in guidance node: {e}")
# return {
# "messages": [AIMessage(content="Error in guidance node.")],
# "next_stage": "brainstorming"
# } |