Spaces:
Runtime error
Runtime error
Commit
·
5992e45
1
Parent(s):
86a0d42
asd
Browse files
app.py
CHANGED
@@ -1,120 +1,558 @@
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
-
from
|
4 |
from langchain_core.messages import HumanMessage
|
5 |
-
from
|
6 |
-
from
|
7 |
-
from PIL import Image
|
8 |
|
9 |
-
|
10 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
11 |
-
"""
|
12 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
13 |
|
|
|
|
|
14 |
|
15 |
-
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
print("BasicAgent initialized.")
|
21 |
-
self.graph = build_graph()
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
config = {"recursion_limit": 27}
|
28 |
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
print(f"Error instantiating agent: {e}")
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
|
|
45 |
|
|
|
|
|
|
|
46 |
|
47 |
-
def
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
53 |
)
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
|
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
# system_message,
|
74 |
-
# max_tokens,
|
75 |
-
# temperature,
|
76 |
-
# top_p,
|
77 |
-
# ):
|
78 |
-
# messages = [{"role": "system", "content": system_message}]
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
#
|
|
|
|
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
# max_tokens=max_tokens,
|
93 |
-
# stream=True,
|
94 |
-
# temperature=temperature,
|
95 |
-
# top_p=top_p,
|
96 |
-
# ):
|
97 |
-
# token = message.choices[0].delta.content
|
98 |
|
99 |
-
|
100 |
-
|
|
|
|
|
101 |
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import logging
|
3 |
+
import logging.config
|
4 |
+
from typing import Any
|
5 |
+
from uuid import uuid4, UUID
|
6 |
+
import json
|
7 |
+
|
8 |
import gradio as gr
|
9 |
+
from dotenv import load_dotenv
|
10 |
from langchain_core.messages import HumanMessage
|
11 |
+
from langgraph.types import RunnableConfig
|
12 |
+
from pydantic import BaseModel
|
|
|
13 |
|
14 |
+
load_dotenv()
|
|
|
|
|
|
|
15 |
|
16 |
+
# There are tools set here dependent on environment variables
|
17 |
+
from graph import graph, weak_model, search_enabled # noqa
|
18 |
|
19 |
+
FOLLOWUP_QUESTION_NUMBER = 3
|
20 |
+
TRIM_MESSAGE_LENGTH = 16 # Includes tool messages
|
21 |
+
USER_INPUT_MAX_LENGTH = 10000 # Characters
|
22 |
|
23 |
+
# We need the same secret for data persistance
|
24 |
+
# If you store sensitive data, you should store your secret in .env
|
25 |
+
BROWSER_STORAGE_SECRET = "itsnosecret"
|
|
|
|
|
26 |
|
27 |
+
with open('logging-config.json', 'r') as fh:
|
28 |
+
config = json.load(fh)
|
29 |
+
logging.config.dictConfig(config)
|
30 |
+
logger = logging.getLogger(__name__)
|
|
|
31 |
|
32 |
+
async def chat_fn(user_input: str, history: dict, input_graph_state: dict, uuid: UUID, prompt: str, search_enabled: bool, download_website_text_enabled: bool):
|
33 |
+
"""
|
34 |
+
Args:
|
35 |
+
user_input (str): The user's input message
|
36 |
+
history (dict): The history of the conversation in gradio
|
37 |
+
input_graph_state (dict): The current state of the graph. This includes tool call history
|
38 |
+
uuid (UUID): The unique identifier for the current conversation. This can be used in conjunction with langgraph or for memory
|
39 |
+
prompt (str): The system prompt
|
40 |
+
Yields:
|
41 |
+
str: The output message
|
42 |
+
dict|Any: The final state of the graph
|
43 |
+
bool|Any: Whether to trigger follow up questions
|
44 |
|
45 |
+
We do not use gradio history in the graph since we want the ToolMessage in the history
|
46 |
+
ordered properly. GraphProcessingState.messages is used as history instead
|
47 |
+
"""
|
48 |
+
try:
|
49 |
+
logger.info(f"Prompt: {prompt}")
|
50 |
+
input_graph_state["tools_enabled"] = {
|
51 |
+
"download_website_text": download_website_text_enabled,
|
52 |
+
"tavily_search_results_json": search_enabled,
|
53 |
+
}
|
54 |
+
if prompt:
|
55 |
+
input_graph_state["prompt"] = prompt
|
56 |
+
if "messages" not in input_graph_state:
|
57 |
+
input_graph_state["messages"] = []
|
58 |
+
input_graph_state["messages"].append(
|
59 |
+
HumanMessage(user_input[:USER_INPUT_MAX_LENGTH])
|
60 |
+
)
|
61 |
+
input_graph_state["messages"] = input_graph_state["messages"][-TRIM_MESSAGE_LENGTH:]
|
62 |
+
config = RunnableConfig(
|
63 |
+
recursion_limit=20,
|
64 |
+
run_name="user_chat",
|
65 |
+
configurable={"thread_id": uuid}
|
66 |
+
)
|
67 |
|
68 |
+
output: str = ""
|
69 |
+
final_state: dict | Any = {}
|
70 |
+
waiting_output_seq: list[str] = []
|
|
|
71 |
|
72 |
+
async for stream_mode, chunk in graph.astream(
|
73 |
+
input_graph_state,
|
74 |
+
config=config,
|
75 |
+
stream_mode=["values", "messages"],
|
76 |
+
):
|
77 |
+
if stream_mode == "values":
|
78 |
+
final_state = chunk
|
79 |
+
last_message = chunk["messages"][-1]
|
80 |
+
if hasattr(last_message, "tool_calls"):
|
81 |
+
for msg_tool_call in last_message.tool_calls:
|
82 |
+
tool_name: str = msg_tool_call['name']
|
83 |
+
if tool_name == "tavily_search_results_json":
|
84 |
+
query = msg_tool_call['args']['query']
|
85 |
+
waiting_output_seq.append(f"Searching for '{query}'...")
|
86 |
+
yield "\n".join(waiting_output_seq), gr.skip(), gr.skip()
|
87 |
+
# download_website_text is the name of the function defined in graph.py
|
88 |
+
elif tool_name == "download_website_text":
|
89 |
+
url = msg_tool_call['args']['url']
|
90 |
+
waiting_output_seq.append(f"Downloading text from '{url}'...")
|
91 |
+
yield "\n".join(waiting_output_seq), gr.skip(), gr.skip()
|
92 |
+
else:
|
93 |
+
waiting_output_seq.append(f"Running {tool_name}...")
|
94 |
+
yield "\n".join(waiting_output_seq), gr.skip(), gr.skip()
|
95 |
+
elif stream_mode == "messages":
|
96 |
+
msg, metadata = chunk
|
97 |
+
# print("output: ", msg, metadata)
|
98 |
+
# assistant_node is the name we defined in the langgraph graph
|
99 |
+
if metadata['langgraph_node'] == "assistant_node" and msg.content:
|
100 |
+
output += msg.content
|
101 |
+
yield output, gr.skip(), gr.skip()
|
102 |
+
# Trigger for asking follow up questions
|
103 |
+
# + store the graph state for next iteration
|
104 |
+
# yield output, dict(final_state), gr.skip()
|
105 |
+
yield output + " ", dict(final_state), True
|
106 |
+
except Exception:
|
107 |
+
logger.exception("Exception occurred")
|
108 |
+
user_error_message = "There was an error processing your request. Please try again."
|
109 |
+
yield user_error_message, gr.skip(), False
|
110 |
|
111 |
+
def clear():
|
112 |
+
return dict(), uuid4()
|
113 |
|
114 |
+
class FollowupQuestions(BaseModel):
|
115 |
+
"""Model for langchain to use for structured output for followup questions"""
|
116 |
+
questions: list[str]
|
117 |
|
118 |
+
async def populate_followup_questions(end_of_chat_response: bool, messages: dict[str, str], uuid: UUID):
|
119 |
+
"""
|
120 |
+
This function gets called a lot due to the asynchronous nature of streaming
|
121 |
+
|
122 |
+
Only populate followup questions if streaming has completed and the message is coming from the assistant
|
123 |
+
"""
|
124 |
+
if not end_of_chat_response or not messages or messages[-1]["role"] != "assistant":
|
125 |
+
return *[gr.skip() for _ in range(FOLLOWUP_QUESTION_NUMBER)], False
|
126 |
+
config = RunnableConfig(
|
127 |
+
run_name="populate_followup_questions",
|
128 |
+
configurable={"thread_id": uuid}
|
129 |
)
|
130 |
+
weak_model_with_config = weak_model.with_config(config)
|
131 |
+
follow_up_questions = await weak_model_with_config.with_structured_output(FollowupQuestions).ainvoke([
|
132 |
+
("system", f"suggest {FOLLOWUP_QUESTION_NUMBER} followup questions for the user to ask the assistant. Refrain from asking personal questions."),
|
133 |
+
*messages,
|
134 |
+
])
|
135 |
+
if len(follow_up_questions.questions) != FOLLOWUP_QUESTION_NUMBER:
|
136 |
+
raise ValueError("Invalid value of followup questions")
|
137 |
+
buttons = []
|
138 |
+
for i in range(FOLLOWUP_QUESTION_NUMBER):
|
139 |
+
buttons.append(
|
140 |
+
gr.Button(follow_up_questions.questions[i], visible=True, elem_classes="chat-tab"),
|
141 |
+
)
|
142 |
+
return *buttons, False
|
143 |
|
144 |
+
async def summarize_chat(end_of_chat_response: bool, messages: dict, sidebar_summaries: dict, uuid: UUID):
|
145 |
+
"""Summarize chat for tab names"""
|
146 |
+
# print("\n------------------------")
|
147 |
+
# print("not end_of_chat_response", not end_of_chat_response)
|
148 |
+
# print("not messages", not messages)
|
149 |
+
# if messages:
|
150 |
+
# print("messages[-1][role] != assistant", messages[-1]["role"] != "assistant")
|
151 |
+
# print("isinstance(sidebar_summaries, type(lambda x: x))", isinstance(sidebar_summaries, type(lambda x: x)))
|
152 |
+
# print("uuid in sidebar_summaries", uuid in sidebar_summaries)
|
153 |
+
should_return = (
|
154 |
+
not end_of_chat_response or
|
155 |
+
not messages or
|
156 |
+
messages[-1]["role"] != "assistant" or
|
157 |
+
# This is a bug with gradio
|
158 |
+
isinstance(sidebar_summaries, type(lambda x: x)) or
|
159 |
+
# Already created summary
|
160 |
+
uuid in sidebar_summaries
|
161 |
+
)
|
162 |
+
if should_return:
|
163 |
+
return gr.skip(), gr.skip()
|
164 |
+
config = RunnableConfig(
|
165 |
+
run_name="summarize_chat",
|
166 |
+
configurable={"thread_id": uuid}
|
167 |
+
)
|
168 |
+
weak_model_with_config = weak_model.with_config(config)
|
169 |
+
summary_response = await weak_model_with_config.ainvoke([
|
170 |
+
("system", "summarize this chat in 7 tokens or less. Refrain from using periods"),
|
171 |
+
*messages,
|
172 |
+
])
|
173 |
+
if uuid not in sidebar_summaries:
|
174 |
+
sidebar_summaries[uuid] = summary_response.content
|
175 |
+
return sidebar_summaries, False
|
176 |
|
177 |
+
async def new_tab(uuid, gradio_graph, messages, tabs, prompt, sidebar_summaries):
|
178 |
+
new_uuid = uuid4()
|
179 |
+
new_graph = {}
|
180 |
+
if uuid not in sidebar_summaries:
|
181 |
+
sidebar_summaries, _ = await summarize_chat(True, messages, sidebar_summaries, uuid)
|
182 |
+
tabs[uuid] = {
|
183 |
+
"graph": gradio_graph,
|
184 |
+
"messages": messages,
|
185 |
+
"prompt": prompt,
|
186 |
+
}
|
187 |
+
suggestion_buttons = []
|
188 |
+
for _ in range(FOLLOWUP_QUESTION_NUMBER):
|
189 |
+
suggestion_buttons.append(gr.Button(visible=False))
|
190 |
+
new_messages = {}
|
191 |
+
new_prompt = "You are a helpful assistant."
|
192 |
+
return new_uuid, new_graph, new_messages, tabs, new_prompt, sidebar_summaries, *suggestion_buttons
|
193 |
|
194 |
+
def switch_tab(selected_uuid, tabs, gradio_graph, uuid, messages, prompt):
|
195 |
+
# I don't know of another way to lookup uuid other than
|
196 |
+
# by the button value
|
197 |
|
198 |
+
# Save current state
|
199 |
+
if messages:
|
200 |
+
tabs[uuid] = {
|
201 |
+
"graph": gradio_graph,
|
202 |
+
"messages": messages,
|
203 |
+
"prompt": prompt
|
204 |
+
}
|
205 |
|
206 |
+
if selected_uuid not in tabs:
|
207 |
+
logger.error(f"Could not find the selected tab in offloaded_tabs_data_storage {selected_uuid}")
|
208 |
+
return gr.skip(), gr.skip(), gr.skip(), gr.skip()
|
209 |
+
selected_tab_state = tabs[selected_uuid]
|
210 |
+
selected_graph = selected_tab_state["graph"]
|
211 |
+
selected_messages = selected_tab_state["messages"]
|
212 |
+
selected_prompt = selected_tab_state.get("prompt", "")
|
213 |
+
suggestion_buttons = []
|
214 |
+
for _ in range(FOLLOWUP_QUESTION_NUMBER):
|
215 |
+
suggestion_buttons.append(gr.Button(visible=False))
|
216 |
+
return selected_graph, selected_uuid, selected_messages, tabs, selected_prompt, *suggestion_buttons
|
217 |
|
218 |
+
def delete_tab(current_chat_uuid, selected_uuid, sidebar_summaries, tabs):
|
219 |
+
output_messages = gr.skip()
|
220 |
+
if current_chat_uuid == selected_uuid:
|
221 |
+
output_messages = dict()
|
222 |
+
if selected_uuid in tabs:
|
223 |
+
del tabs[selected_uuid]
|
224 |
+
if selected_uuid in sidebar_summaries:
|
225 |
+
del sidebar_summaries[selected_uuid]
|
226 |
+
return sidebar_summaries, tabs, output_messages
|
227 |
|
228 |
+
def submit_edit_tab(selected_uuid, sidebar_summaries, text):
|
229 |
+
sidebar_summaries[selected_uuid] = text
|
230 |
+
return sidebar_summaries, ""
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
+
CSS = """
|
233 |
+
footer {visibility: hidden}
|
234 |
+
.followup-question-button {font-size: 12px }
|
235 |
+
.chat-tab {
|
236 |
+
font-size: 12px;
|
237 |
+
padding-inline: 0;
|
238 |
+
}
|
239 |
+
.chat-tab.active {
|
240 |
+
background-color: #654343;
|
241 |
+
}
|
242 |
+
#new-chat-button { background-color: #0f0f11; color: white; }
|
243 |
|
244 |
+
.tab-button-control {
|
245 |
+
min-width: 0;
|
246 |
+
padding-left: 0;
|
247 |
+
padding-right: 0;
|
248 |
+
}
|
249 |
+
"""
|
250 |
|
251 |
+
# We set the ChatInterface textbox id to chat-textbox for this to work
|
252 |
+
TRIGGER_CHATINTERFACE_BUTTON = """
|
253 |
+
function triggerChatButtonClick() {
|
254 |
|
255 |
+
// Find the div with id "chat-textbox"
|
256 |
+
const chatTextbox = document.getElementById("chat-textbox");
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
|
258 |
+
if (!chatTextbox) {
|
259 |
+
console.error("Error: Could not find element with id 'chat-textbox'");
|
260 |
+
return;
|
261 |
+
}
|
262 |
|
263 |
+
// Find the button that is a descendant of the div
|
264 |
+
const button = chatTextbox.querySelector("button");
|
265 |
|
266 |
+
if (!button) {
|
267 |
+
console.error("Error: No button found inside the chat-textbox element");
|
268 |
+
return;
|
269 |
+
}
|
270 |
+
|
271 |
+
// Trigger the click event
|
272 |
+
button.click();
|
273 |
+
}"""
|
274 |
+
|
275 |
+
if __name__ == "__main__":
|
276 |
+
logger.info("Starting the interface")
|
277 |
+
with gr.Blocks(title="Langgraph Template", fill_height=True, css=CSS) as app:
|
278 |
+
current_prompt_state = gr.BrowserState(
|
279 |
+
storage_key="current_prompt_state",
|
280 |
+
secret=BROWSER_STORAGE_SECRET,
|
281 |
+
)
|
282 |
+
current_uuid_state = gr.BrowserState(
|
283 |
+
uuid4,
|
284 |
+
storage_key="current_uuid_state",
|
285 |
+
secret=BROWSER_STORAGE_SECRET,
|
286 |
+
)
|
287 |
+
current_langgraph_state = gr.BrowserState(
|
288 |
+
dict(),
|
289 |
+
storage_key="current_langgraph_state",
|
290 |
+
secret=BROWSER_STORAGE_SECRET,
|
291 |
+
)
|
292 |
+
end_of_assistant_response_state = gr.State(
|
293 |
+
bool(),
|
294 |
+
)
|
295 |
+
# [uuid] -> summary of chat
|
296 |
+
sidebar_names_state = gr.BrowserState(
|
297 |
+
dict(),
|
298 |
+
storage_key="sidebar_names_state",
|
299 |
+
secret=BROWSER_STORAGE_SECRET,
|
300 |
+
)
|
301 |
+
# [uuid] -> {"graph": gradio_graph, "messages": messages}
|
302 |
+
offloaded_tabs_data_storage = gr.BrowserState(
|
303 |
+
dict(),
|
304 |
+
storage_key="offloaded_tabs_data_storage",
|
305 |
+
secret=BROWSER_STORAGE_SECRET,
|
306 |
+
)
|
307 |
+
|
308 |
+
chatbot_message_storage = gr.BrowserState(
|
309 |
+
[],
|
310 |
+
storage_key="chatbot_message_storage",
|
311 |
+
secret=BROWSER_STORAGE_SECRET,
|
312 |
+
)
|
313 |
+
with gr.Column():
|
314 |
+
prompt_textbox = gr.Textbox(show_label=False, interactive=True)
|
315 |
+
with gr.Row():
|
316 |
+
checkbox_search_enabled = gr.Checkbox(
|
317 |
+
value=True,
|
318 |
+
label="Enable search",
|
319 |
+
show_label=True,
|
320 |
+
visible=search_enabled,
|
321 |
+
scale=1,
|
322 |
+
)
|
323 |
+
checkbox_download_website_text = gr.Checkbox(
|
324 |
+
value=True,
|
325 |
+
show_label=True,
|
326 |
+
label="Enable downloading text from urls",
|
327 |
+
scale=1,
|
328 |
+
)
|
329 |
+
chatbot = gr.Chatbot(
|
330 |
+
type="messages",
|
331 |
+
scale=1,
|
332 |
+
show_copy_button=True,
|
333 |
+
height=600,
|
334 |
+
editable="all",
|
335 |
+
)
|
336 |
+
tab_edit_uuid_state = gr.State(
|
337 |
+
str()
|
338 |
+
)
|
339 |
+
prompt_textbox.change(lambda prompt: prompt, inputs=[prompt_textbox], outputs=[current_prompt_state])
|
340 |
+
with gr.Sidebar() as sidebar:
|
341 |
+
@gr.render(inputs=[tab_edit_uuid_state, end_of_assistant_response_state, sidebar_names_state, current_uuid_state, chatbot, offloaded_tabs_data_storage])
|
342 |
+
def render_chats(tab_uuid_edit, end_of_chat_response, sidebar_summaries, active_uuid, messages, tabs):
|
343 |
+
current_tab_button_text = ""
|
344 |
+
if active_uuid not in sidebar_summaries:
|
345 |
+
current_tab_button_text = "Current Chat"
|
346 |
+
elif active_uuid not in tabs:
|
347 |
+
current_tab_button_text = sidebar_summaries[active_uuid]
|
348 |
+
if current_tab_button_text:
|
349 |
+
gr.Button(current_tab_button_text, elem_classes=["chat-tab", "active"])
|
350 |
+
for chat_uuid, tab in reversed(tabs.items()):
|
351 |
+
elem_classes = ["chat-tab"]
|
352 |
+
if chat_uuid == active_uuid:
|
353 |
+
elem_classes.append("active")
|
354 |
+
button_uuid_state = gr.State(chat_uuid)
|
355 |
+
with gr.Row():
|
356 |
+
clear_tab_button = gr.Button(
|
357 |
+
"🗑",
|
358 |
+
scale=0,
|
359 |
+
elem_classes=["tab-button-control"]
|
360 |
+
)
|
361 |
+
clear_tab_button.click(
|
362 |
+
fn=delete_tab,
|
363 |
+
inputs=[
|
364 |
+
current_uuid_state,
|
365 |
+
button_uuid_state,
|
366 |
+
sidebar_names_state,
|
367 |
+
offloaded_tabs_data_storage
|
368 |
+
],
|
369 |
+
outputs=[
|
370 |
+
sidebar_names_state,
|
371 |
+
offloaded_tabs_data_storage,
|
372 |
+
chat_interface.chatbot_value
|
373 |
+
]
|
374 |
+
)
|
375 |
+
chat_button_text = sidebar_summaries.get(chat_uuid)
|
376 |
+
if not chat_button_text:
|
377 |
+
chat_button_text = str(chat_uuid)
|
378 |
+
if chat_uuid != tab_uuid_edit:
|
379 |
+
set_edit_tab_button = gr.Button(
|
380 |
+
"✎",
|
381 |
+
scale=0,
|
382 |
+
elem_classes=["tab-button-control"]
|
383 |
+
)
|
384 |
+
set_edit_tab_button.click(
|
385 |
+
fn=lambda x: x,
|
386 |
+
inputs=[button_uuid_state],
|
387 |
+
outputs=[tab_edit_uuid_state]
|
388 |
+
)
|
389 |
+
chat_tab_button = gr.Button(
|
390 |
+
chat_button_text,
|
391 |
+
elem_id=f"chat-{chat_uuid}-button",
|
392 |
+
elem_classes=elem_classes,
|
393 |
+
scale=2
|
394 |
+
)
|
395 |
+
chat_tab_button.click(
|
396 |
+
fn=switch_tab,
|
397 |
+
inputs=[
|
398 |
+
button_uuid_state,
|
399 |
+
offloaded_tabs_data_storage,
|
400 |
+
current_langgraph_state,
|
401 |
+
current_uuid_state,
|
402 |
+
chatbot,
|
403 |
+
prompt_textbox
|
404 |
+
],
|
405 |
+
outputs=[
|
406 |
+
current_langgraph_state,
|
407 |
+
current_uuid_state,
|
408 |
+
chat_interface.chatbot_value,
|
409 |
+
offloaded_tabs_data_storage,
|
410 |
+
prompt_textbox,
|
411 |
+
*followup_question_buttons
|
412 |
+
]
|
413 |
+
)
|
414 |
+
else:
|
415 |
+
chat_tab_text = gr.Textbox(
|
416 |
+
chat_button_text,
|
417 |
+
scale=2,
|
418 |
+
interactive=True,
|
419 |
+
show_label=False
|
420 |
+
)
|
421 |
+
chat_tab_text.submit(
|
422 |
+
fn=submit_edit_tab,
|
423 |
+
inputs=[
|
424 |
+
button_uuid_state,
|
425 |
+
sidebar_names_state,
|
426 |
+
chat_tab_text
|
427 |
+
],
|
428 |
+
outputs=[
|
429 |
+
sidebar_names_state,
|
430 |
+
tab_edit_uuid_state
|
431 |
+
]
|
432 |
+
)
|
433 |
+
# )
|
434 |
+
# return chat_tabs, sidebar_summaries
|
435 |
+
new_chat_button = gr.Button("New Chat", elem_id="new-chat-button")
|
436 |
+
chatbot.clear(fn=clear, outputs=[current_langgraph_state, current_uuid_state])
|
437 |
+
with gr.Row():
|
438 |
+
followup_question_buttons = []
|
439 |
+
for i in range(FOLLOWUP_QUESTION_NUMBER):
|
440 |
+
btn = gr.Button(f"Button {i+1}", visible=False)
|
441 |
+
followup_question_buttons.append(btn)
|
442 |
+
|
443 |
+
multimodal = False
|
444 |
+
textbox_component = (
|
445 |
+
gr.MultimodalTextbox if multimodal else gr.Textbox
|
446 |
+
)
|
447 |
+
with gr.Column():
|
448 |
+
textbox = textbox_component(
|
449 |
+
show_label=False,
|
450 |
+
label="Message",
|
451 |
+
placeholder="Type a message...",
|
452 |
+
scale=7,
|
453 |
+
autofocus=True,
|
454 |
+
submit_btn=True,
|
455 |
+
stop_btn=True,
|
456 |
+
elem_id="chat-textbox",
|
457 |
+
lines=1,
|
458 |
+
)
|
459 |
+
chat_interface = gr.ChatInterface(
|
460 |
+
chatbot=chatbot,
|
461 |
+
fn=chat_fn,
|
462 |
+
additional_inputs=[
|
463 |
+
current_langgraph_state,
|
464 |
+
current_uuid_state,
|
465 |
+
prompt_textbox,
|
466 |
+
checkbox_search_enabled,
|
467 |
+
checkbox_download_website_text,
|
468 |
+
],
|
469 |
+
additional_outputs=[
|
470 |
+
current_langgraph_state,
|
471 |
+
end_of_assistant_response_state
|
472 |
+
],
|
473 |
+
type="messages",
|
474 |
+
multimodal=multimodal,
|
475 |
+
textbox=textbox,
|
476 |
+
)
|
477 |
+
|
478 |
+
new_chat_button.click(
|
479 |
+
new_tab,
|
480 |
+
inputs=[
|
481 |
+
current_uuid_state,
|
482 |
+
current_langgraph_state,
|
483 |
+
chatbot,
|
484 |
+
offloaded_tabs_data_storage,
|
485 |
+
prompt_textbox,
|
486 |
+
sidebar_names_state,
|
487 |
+
],
|
488 |
+
outputs=[
|
489 |
+
current_uuid_state,
|
490 |
+
current_langgraph_state,
|
491 |
+
chat_interface.chatbot_value,
|
492 |
+
offloaded_tabs_data_storage,
|
493 |
+
prompt_textbox,
|
494 |
+
sidebar_names_state,
|
495 |
+
*followup_question_buttons,
|
496 |
+
]
|
497 |
+
)
|
498 |
+
|
499 |
+
def click_followup_button(btn):
|
500 |
+
buttons = [gr.Button(visible=False) for _ in range(len(followup_question_buttons))]
|
501 |
+
return btn, *buttons
|
502 |
+
for btn in followup_question_buttons:
|
503 |
+
btn.click(
|
504 |
+
fn=click_followup_button,
|
505 |
+
inputs=[btn],
|
506 |
+
outputs=[
|
507 |
+
chat_interface.textbox,
|
508 |
+
*followup_question_buttons
|
509 |
+
]
|
510 |
+
).success(lambda: None, js=TRIGGER_CHATINTERFACE_BUTTON)
|
511 |
+
|
512 |
+
chatbot.change(
|
513 |
+
fn=populate_followup_questions,
|
514 |
+
inputs=[
|
515 |
+
end_of_assistant_response_state,
|
516 |
+
chatbot,
|
517 |
+
current_uuid_state
|
518 |
+
],
|
519 |
+
outputs=[
|
520 |
+
*followup_question_buttons,
|
521 |
+
end_of_assistant_response_state
|
522 |
+
],
|
523 |
+
trigger_mode="multiple"
|
524 |
+
)
|
525 |
+
chatbot.change(
|
526 |
+
fn=summarize_chat,
|
527 |
+
inputs=[
|
528 |
+
end_of_assistant_response_state,
|
529 |
+
chatbot,
|
530 |
+
sidebar_names_state,
|
531 |
+
current_uuid_state
|
532 |
+
],
|
533 |
+
outputs=[
|
534 |
+
sidebar_names_state,
|
535 |
+
end_of_assistant_response_state
|
536 |
+
],
|
537 |
+
trigger_mode="multiple"
|
538 |
+
)
|
539 |
+
chatbot.change(
|
540 |
+
fn=lambda x: x,
|
541 |
+
inputs=[chatbot],
|
542 |
+
outputs=[chatbot_message_storage],
|
543 |
+
trigger_mode="always_last"
|
544 |
+
)
|
545 |
+
|
546 |
+
@app.load(inputs=[chatbot_message_storage], outputs=[chat_interface.chatbot_value])
|
547 |
+
def load_messages(messages):
|
548 |
+
return messages
|
549 |
+
|
550 |
+
@app.load(inputs=[current_prompt_state], outputs=[prompt_textbox])
|
551 |
+
def load_prompt(current_prompt):
|
552 |
+
return current_prompt
|
553 |
+
|
554 |
+
app.launch(
|
555 |
+
server_name="127.0.0.1",
|
556 |
+
server_port=int(os.getenv("GRADIO_SERVER_PORT", 7860)),
|
557 |
+
# favicon_path="assets/favicon.ico"
|
558 |
+
)
|
graph.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
from typing import Annotated
|
4 |
+
|
5 |
+
import aiohttp
|
6 |
+
from langchain_core.messages import AnyMessage
|
7 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
8 |
+
from langchain_core.tools import tool
|
9 |
+
from langchain_openai import ChatOpenAI
|
10 |
+
from langgraph.graph.state import CompiledStateGraph
|
11 |
+
from langgraph.prebuilt import ToolNode
|
12 |
+
from langgraph.graph import StateGraph, END, add_messages
|
13 |
+
from langchain_community.tools import TavilySearchResults
|
14 |
+
from pydantic import BaseModel, Field
|
15 |
+
from trafilatura import extract
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
ASSISTANT_SYSTEM_PROMPT_BASE = """"""
|
19 |
+
search_enabled = bool(os.environ.get("TAVILY_API_KEY"))
|
20 |
+
|
21 |
+
@tool
|
22 |
+
async def download_website_text(url: str) -> str:
|
23 |
+
"""Download the text from a website"""
|
24 |
+
try:
|
25 |
+
async with aiohttp.ClientSession() as session:
|
26 |
+
async with session.get(url) as response:
|
27 |
+
response.raise_for_status()
|
28 |
+
downloaded = await response.text()
|
29 |
+
result = extract(downloaded, include_formatting=True, include_links=True, output_format='json', with_metadata=True)
|
30 |
+
return result or "No text found on the website"
|
31 |
+
except Exception as e:
|
32 |
+
logger.error(f"Failed to download {url}: {str(e)}")
|
33 |
+
return f"Error retrieving website content: {str(e)}"
|
34 |
+
|
35 |
+
tools = [download_website_text]
|
36 |
+
|
37 |
+
if search_enabled:
|
38 |
+
tavily_search_tool = TavilySearchResults(
|
39 |
+
max_results=5,
|
40 |
+
search_depth="advanced",
|
41 |
+
include_answer=True,
|
42 |
+
include_raw_content=True,
|
43 |
+
)
|
44 |
+
tools.append(tavily_search_tool)
|
45 |
+
else:
|
46 |
+
print("TAVILY_API_KEY environment variable not found. Websearch disabled")
|
47 |
+
|
48 |
+
weak_model = ChatOpenAI(model="gpt-4o-mini", tags=["assistant"])
|
49 |
+
model = weak_model
|
50 |
+
assistant_model = weak_model
|
51 |
+
|
52 |
+
class GraphProcessingState(BaseModel):
|
53 |
+
# user_input: str = Field(default_factory=str, description="The original user input")
|
54 |
+
messages: Annotated[list[AnyMessage], add_messages] = Field(default_factory=list)
|
55 |
+
prompt: str = Field(default_factory=str, description="The prompt to be used for the model")
|
56 |
+
tools_enabled: dict = Field(default_factory=dict, description="The tools enabled for the assistant")
|
57 |
+
search_enabled: bool = Field(default=True, description="Whether to enable search tools")
|
58 |
+
|
59 |
+
async def assistant_node(state: GraphProcessingState, config=None):
|
60 |
+
assistant_tools = []
|
61 |
+
if state.tools_enabled.get("download_website_text", True):
|
62 |
+
assistant_tools.append(download_website_text)
|
63 |
+
if search_enabled and state.tools_enabled.get("tavily_search_results_json", True):
|
64 |
+
assistant_tools.append(tavily_search_tool)
|
65 |
+
assistant_model = model.bind_tools(assistant_tools)
|
66 |
+
if state.prompt:
|
67 |
+
final_prompt = "\n".join([state.prompt, ASSISTANT_SYSTEM_PROMPT_BASE])
|
68 |
+
else:
|
69 |
+
final_prompt = ASSISTANT_SYSTEM_PROMPT_BASE
|
70 |
+
|
71 |
+
prompt = ChatPromptTemplate.from_messages(
|
72 |
+
[
|
73 |
+
("system", final_prompt),
|
74 |
+
MessagesPlaceholder(variable_name="messages"),
|
75 |
+
]
|
76 |
+
)
|
77 |
+
chain = prompt | assistant_model
|
78 |
+
response = await chain.ainvoke({"messages": state.messages}, config=config)
|
79 |
+
|
80 |
+
return {
|
81 |
+
"messages": response
|
82 |
+
}
|
83 |
+
|
84 |
+
def assistant_cond_edge(state: GraphProcessingState):
|
85 |
+
last_message = state.messages[-1]
|
86 |
+
if hasattr(last_message, "tool_calls") and last_message.tool_calls:
|
87 |
+
logger.info(f"Tool call detected: {last_message.tool_calls}")
|
88 |
+
return "tools"
|
89 |
+
return END
|
90 |
+
|
91 |
+
def define_workflow() -> CompiledStateGraph:
|
92 |
+
"""Defines the workflow graph"""
|
93 |
+
# Initialize the graph
|
94 |
+
workflow = StateGraph(GraphProcessingState)
|
95 |
+
|
96 |
+
# Add nodes
|
97 |
+
workflow.add_node("assistant_node", assistant_node)
|
98 |
+
workflow.add_node("tools", ToolNode(tools))
|
99 |
+
|
100 |
+
# Edges
|
101 |
+
workflow.add_edge("tools", "assistant_node")
|
102 |
+
|
103 |
+
# Conditional routing
|
104 |
+
workflow.add_conditional_edges(
|
105 |
+
"assistant_node",
|
106 |
+
# If the latest message (result) from assistant is a tool call -> assistant_cond_edge routes to tools
|
107 |
+
# If the latest message (result) from assistant is a not a tool call -> assistant_cond_edge routes to END
|
108 |
+
assistant_cond_edge,
|
109 |
+
)
|
110 |
+
# Set end nodes
|
111 |
+
workflow.set_entry_point("assistant_node")
|
112 |
+
# workflow.set_finish_point("assistant_node")
|
113 |
+
|
114 |
+
return workflow.compile()
|
115 |
+
|
116 |
+
graph = define_workflow()
|
notapp.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from huggingface_hub import InferenceClient
|
4 |
+
from langchain_core.messages import HumanMessage
|
5 |
+
from langchain.agents import AgentExecutor
|
6 |
+
from agent import build_graph
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
"""
|
10 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
11 |
+
"""
|
12 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
13 |
+
|
14 |
+
|
15 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
16 |
+
|
17 |
+
class BasicAgent:
|
18 |
+
"""A langgraph agent."""
|
19 |
+
def __init__(self):
|
20 |
+
print("BasicAgent initialized.")
|
21 |
+
self.graph = build_graph()
|
22 |
+
|
23 |
+
def __call__(self, question: str) -> str:
|
24 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
25 |
+
# Wrap the question in a HumanMessage from langchain_core
|
26 |
+
messages = [HumanMessage(content=question)]
|
27 |
+
config = {"recursion_limit": 27}
|
28 |
+
|
29 |
+
messages = self.graph.invoke({"messages": messages}, config=config)
|
30 |
+
|
31 |
+
answer = messages['messages'][-1].content
|
32 |
+
return answer[14:]
|
33 |
+
|
34 |
+
try:
|
35 |
+
agent = BasicAgent()
|
36 |
+
except Exception as e:
|
37 |
+
print(f"Error instantiating agent: {e}")
|
38 |
+
|
39 |
+
def show_graph():
|
40 |
+
if not os.path.exists("graph.png"):
|
41 |
+
return None
|
42 |
+
return Image.open("graph.png")
|
43 |
+
|
44 |
+
config = {"configurable": {"thread_id": "1"}}
|
45 |
+
|
46 |
+
|
47 |
+
def run_langgraph_agent(user_input: str):
|
48 |
+
graph = build_graph()
|
49 |
+
result = graph.stream(
|
50 |
+
{"messages": [HumanMessage(content=user_input)]},
|
51 |
+
config,
|
52 |
+
stream_mode="values",
|
53 |
+
)
|
54 |
+
return result["messages"][-1].content if "messages" in result else result
|
55 |
+
|
56 |
+
|
57 |
+
demo = gr.Interface(
|
58 |
+
fn=run_langgraph_agent,
|
59 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your message..."),
|
60 |
+
outputs="text",
|
61 |
+
title="LangGraph Agent Chat",
|
62 |
+
)
|
63 |
+
|
64 |
+
if __name__ == "__main__":
|
65 |
+
demo.launch()
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
# def respond(
|
71 |
+
# message,
|
72 |
+
# history: list[tuple[str, str]],
|
73 |
+
# system_message,
|
74 |
+
# max_tokens,
|
75 |
+
# temperature,
|
76 |
+
# top_p,
|
77 |
+
# ):
|
78 |
+
# messages = [{"role": "system", "content": system_message}]
|
79 |
+
|
80 |
+
# for val in history:
|
81 |
+
# if val[0]:
|
82 |
+
# messages.append({"role": "user", "content": val[0]})
|
83 |
+
# if val[1]:
|
84 |
+
# messages.append({"role": "assistant", "content": val[1]})
|
85 |
+
|
86 |
+
# messages.append({"role": "user", "content": message})
|
87 |
+
|
88 |
+
# response = ""
|
89 |
+
|
90 |
+
# for message in client.chat_completion(
|
91 |
+
# messages,
|
92 |
+
# max_tokens=max_tokens,
|
93 |
+
# stream=True,
|
94 |
+
# temperature=temperature,
|
95 |
+
# top_p=top_p,
|
96 |
+
# ):
|
97 |
+
# token = message.choices[0].delta.content
|
98 |
+
|
99 |
+
# response += token
|
100 |
+
# yield response
|
101 |
+
|
102 |
+
|
103 |
+
"""
|
104 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
105 |
+
"""
|
106 |
+
# demo = gr.ChatInterface(
|
107 |
+
# respond,
|
108 |
+
# additional_inputs=[
|
109 |
+
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
110 |
+
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
111 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
112 |
+
# gr.Slider(
|
113 |
+
# minimum=0.1,
|
114 |
+
# maximum=1.0,
|
115 |
+
# value=0.95,
|
116 |
+
# step=0.05,
|
117 |
+
# label="Top-p (nucleus sampling)",
|
118 |
+
# ),
|
119 |
+
# ],
|
120 |
+
# )
|