File size: 34,655 Bytes
aaafea4 f071a4c 9bd549c aaafea4 9bd549c f071a4c fa90b40 f071a4c aaafea4 fe32912 9bd549c aaafea4 9bd549c aaafea4 59543a5 aaafea4 028e0b0 aaafea4 f071a4c aaafea4 b3f7b39 aaafea4 59543a5 028e0b0 59543a5 b3f7b39 aaafea4 59543a5 b3f7b39 aaafea4 028e0b0 aaafea4 fe32912 f071a4c 9bd549c aaafea4 9bd549c aaafea4 9bd549c f071a4c aaafea4 f071a4c aaafea4 f071a4c aaafea4 f071a4c aaafea4 f071a4c aaafea4 f071a4c 9bd549c f071a4c 9bd549c b3f7b39 f071a4c b3f7b39 f071a4c b3f7b39 f071a4c 9bd549c aaafea4 f071a4c aaafea4 9bd549c fe32912 59543a5 f071a4c aaafea4 9bd549c b3f7b39 aaafea4 fe32912 f071a4c aaafea4 b3f7b39 aaafea4 f071a4c aaafea4 f071a4c aaafea4 f071a4c aaafea4 f071a4c aaafea4 f071a4c 028e0b0 aaafea4 028e0b0 f071a4c aaafea4 f071a4c aaafea4 f071a4c aaafea4 f071a4c aaafea4 fe32912 f071a4c aaafea4 b3f7b39 f071a4c aaafea4 f071a4c aaafea4 9bd549c aaafea4 f071a4c aaafea4 f071a4c 028e0b0 b3f7b39 aaafea4 f071a4c aaafea4 59543a5 aaafea4 f071a4c 028e0b0 aaafea4 f071a4c 9bd549c f071a4c aaafea4 f071a4c b3f7b39 aaafea4 9bd549c f071a4c aaafea4 f071a4c aaafea4 9bd549c f071a4c aaafea4 028e0b0 aaafea4 b3f7b39 f071a4c aaafea4 9bd549c f071a4c b3f7b39 f071a4c b3f7b39 f071a4c b3f7b39 f071a4c b3f7b39 f071a4c aaafea4 b3f7b39 f071a4c b3f7b39 f071a4c aaafea4 f071a4c d11f5bc f071a4c aaafea4 f071a4c aaafea4 f071a4c aaafea4 b3f7b39 028e0b0 f071a4c aaafea4 f071a4c aaafea4 b3f7b39 028e0b0 f071a4c aaafea4 f071a4c fe32912 b3f7b39 f071a4c 028e0b0 f071a4c aaafea4 b3f7b39 aaafea4 b3f7b39 028e0b0 f071a4c aaafea4 f071a4c aaafea4 028e0b0 f071a4c aaafea4 f071a4c aaafea4 b3f7b39 f071a4c aaafea4 b3f7b39 f071a4c aaafea4 028e0b0 aaafea4 028e0b0 f071a4c aaafea4 b3f7b39 f071a4c aaafea4 f071a4c aaafea4 f071a4c aaafea4 b3f7b39 f071a4c fae0efa 3369de4 fae0efa f071a4c fae0efa f071a4c fae0efa 3369de4 f071a4c fae0efa f071a4c fae0efa 3369de4 fae0efa aaafea4 f071a4c 3369de4 f071a4c 3369de4 f071a4c 3369de4 f071a4c 3369de4 f071a4c 3369de4 fae0efa f071a4c 028e0b0 aaafea4 3369de4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 |
# app.py
import gradio as gr
import torch
import torch.nn.functional as F # Needed for log_softmax in beam search
import pytorch_lightning as pl
import os
import json
import logging
from tokenizers import Tokenizer
from huggingface_hub import hf_hub_download
import gc
from rdkit.Chem import CanonSmiles, MolFromSmiles # Added MolFromSmiles for validation
import spaces
import heapq # For beam search priority queue
import math # For log probabilities
# --- Configuration ---
MODEL_REPO_ID = (
"AdrianM0/smiles-to-iupac-translator" # <-- Make sure this is your repo ID
)
CHECKPOINT_FILENAME = "last.ckpt"
SMILES_TOKENIZER_FILENAME = "smiles_bytelevel_bpe_tokenizer_scaled.json"
IUPAC_TOKENIZER_FILENAME = "iupac_unigram_tokenizer_scaled.json"
CONFIG_FILENAME = "config.json"
# --- End Configuration ---
# --- Logging ---
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
# --- Load Helper Code (Only Model Definition and Mask Function Needed) ---
try:
# Ensure enhanced_trainer.py is present in the repository root
from enhanced_trainer import SmilesIupacLitModule, generate_square_subsequent_mask
logging.info("Successfully imported from enhanced_trainer.py.")
except ImportError as e:
logging.error(
f"Failed to import helper code from enhanced_trainer.py: {e}. "
f"Make sure enhanced_trainer.py is in the root of the Hugging Face repo '{MODEL_REPO_ID}'."
)
raise gr.Error(
f"Initialization Error: Could not load necessary Python modules (enhanced_trainer.py). Check Space logs. Error: {e}"
)
except Exception as e:
logging.error(
f"An unexpected error occurred during helper code import: {e}", exc_info=True
)
raise gr.Error(
f"Initialization Error: An unexpected error occurred loading helper modules. Check Space logs. Error: {e}"
)
# --- Global Variables (Load Model Once) ---
model: pl.LightningModule | None = None
smiles_tokenizer: Tokenizer | None = None
iupac_tokenizer: Tokenizer | None = None
device: torch.device | None = None
config: dict | None = None
# --- Greedy Decoding Logic (Unchanged) ---
def greedy_decode(
model: pl.LightningModule,
src: torch.Tensor,
src_padding_mask: torch.Tensor,
max_len: int,
sos_idx: int,
eos_idx: int,
device: torch.device,
) -> torch.Tensor:
"""
Performs greedy decoding using the LightningModule's model.
Returns a tensor of shape [1, sequence_length].
"""
model.eval()
transformer_model = model.model
try:
with torch.no_grad():
memory = transformer_model.encode(src, src_padding_mask)
memory = memory.to(device)
memory_key_padding_mask = src_padding_mask.to(memory.device)
ys = torch.ones(1, 1, dtype=torch.long, device=device).fill_(sos_idx)
for _ in range(max_len - 1):
tgt_seq_len = ys.shape[1]
tgt_mask = generate_square_subsequent_mask(tgt_seq_len, device).to(device)
tgt_padding_mask = torch.zeros(ys.shape, dtype=torch.bool, device=device)
decoder_output = transformer_model.decode(
tgt=ys,
memory=memory,
tgt_mask=tgt_mask,
tgt_padding_mask=tgt_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
)
next_token_logits = transformer_model.generator(decoder_output[:, -1, :])
next_word_id = torch.argmax(next_token_logits, dim=1).item()
ys = torch.cat(
[
ys,
torch.ones(1, 1, dtype=torch.long, device=device).fill_(next_word_id),
],
dim=1,
)
if next_word_id == eos_idx:
break
return ys[:, 1:] # Exclude SOS
except RuntimeError as e:
logging.error(f"Runtime error during greedy decode: {e}", exc_info=True)
if "CUDA out of memory" in str(e) and device.type == "cuda":
gc.collect()
torch.cuda.empty_cache()
return torch.empty((1, 0), dtype=torch.long, device=device)
except Exception as e:
logging.error(f"Unexpected error during greedy decode: {e}", exc_info=True)
return torch.empty((1, 0), dtype=torch.long, device=device)
# --- Beam Search Decoding Logic ---
def beam_search_decode(
model: pl.LightningModule,
src: torch.Tensor,
src_padding_mask: torch.Tensor,
max_len: int,
sos_idx: int,
eos_idx: int,
pad_idx: int, # Needed for padding shorter beams if batching
device: torch.device,
beam_width: int,
num_return_sequences: int = 1,
length_penalty_alpha: float = 0.6, # Add length penalty
) -> list[tuple[torch.Tensor, float]]:
"""
Performs beam search decoding.
Returns a list of tuples: (sequence_tensor [1, seq_len], score)
"""
model.eval()
transformer_model = model.model
num_return_sequences = min(beam_width, num_return_sequences) # Cannot return more than beam width
try:
with torch.no_grad():
# --- Encode Source (Once) ---
memory = transformer_model.encode(src, src_padding_mask) # [1, src_len, emb_size]
memory = memory.to(device)
memory_key_padding_mask = src_padding_mask.to(memory.device) # [1, src_len]
# --- Initialize Beams ---
# Each beam: (sequence_tensor [1, current_len], score (log_prob))
initial_beam = (
torch.ones(1, 1, dtype=torch.long, device=device).fill_(sos_idx),
0.0, # Initial score (log probability)
)
beams = [initial_beam]
finished_hypotheses = [] # Store finished sequences: (score, sequence_tensor)
# --- Decoding Loop ---
for step in range(max_len - 1):
if not beams: # Stop if no active beams left
break
# Use a min-heap to keep track of candidates for the *next* step
# Store (-score, next_token_id, beam_index) - use negative score for max-heap behavior
candidates = []
# Process current beams (can be batched for efficiency, but simpler loop shown here)
# For batching: stack ys, expand memory, create masks for the batch
for beam_idx, (current_seq, current_score) in enumerate(beams):
if current_seq[0, -1].item() == eos_idx: # Beam already finished
# Add length penalty before storing
penalty = ((current_seq.shape[1]) ** length_penalty_alpha)
final_score = current_score / penalty if penalty > 0 else current_score
heapq.heappush(finished_hypotheses, (final_score, current_seq))
# Prune finished hypotheses if we have enough
while len(finished_hypotheses) > beam_width:
heapq.heappop(finished_hypotheses) # Remove lowest score
continue # Don't expand finished beams
# --- Prepare input for this beam ---
ys = current_seq # [1, current_len]
tgt_seq_len = ys.shape[1]
tgt_mask = generate_square_subsequent_mask(tgt_seq_len, device).to(device)
tgt_padding_mask = torch.zeros(ys.shape, dtype=torch.bool, device=device)
# --- Decode one step ---
# Note: memory and memory_key_padding_mask are reused
decoder_output = transformer_model.decode(
tgt=ys,
memory=memory, # Needs expansion if batching beams
tgt_mask=tgt_mask,
tgt_padding_mask=tgt_padding_mask,
memory_key_padding_mask=memory_key_padding_mask, # Needs expansion if batching
) # [1, current_len, emb_size]
# Get logits for the *next* token
next_token_logits = transformer_model.generator(
decoder_output[:, -1, :]
) # [1, tgt_vocab_size]
# Calculate log probabilities
log_probs = F.log_softmax(next_token_logits, dim=-1) # [1, tgt_vocab_size]
# Get top K candidates for *this* beam
# Adding current_score makes it the total path score
top_k_log_probs, top_k_indices = torch.topk(log_probs + current_score, beam_width, dim=1)
# Add candidates to the list for selection across all beams
for i in range(beam_width):
token_id = top_k_indices[0, i].item()
score = top_k_log_probs[0, i].item()
# Store (-score, token_id, beam_idx) for heap
heapq.heappush(candidates, (-score, token_id, beam_idx))
# Prune candidates heap if it exceeds beam_width * beam_width (can optimize)
# A simpler pruning: keep only top N overall candidates later
# --- Select Top K Beams for Next Step ---
new_beams = []
# Ensure we don't exceed beam_width overall candidates
num_candidates_to_consider = min(len(candidates), beam_width * len(beams)) # Rough upper bound
# Use heap to efficiently get top k candidates overall
top_candidates = heapq.nsmallest(beam_width, candidates) # Get k smallest (-score) -> largest score
added_sequences = set() # Prevent duplicate sequences if paths converge
for neg_score, token_id, beam_idx in top_candidates:
original_seq, _ = beams[beam_idx]
new_seq = torch.cat(
[
original_seq,
torch.ones(1, 1, dtype=torch.long, device=device).fill_(token_id),
],
dim=1,
) # [1, current_len + 1]
# Avoid adding duplicates (optional, but good practice)
seq_tuple = tuple(new_seq.flatten().tolist())
if seq_tuple not in added_sequences:
new_beams.append((new_seq, -neg_score)) # Store positive score
added_sequences.add(seq_tuple)
beams = new_beams # Update active beams
# Early stopping: If top beam is finished and we have enough results
if finished_hypotheses:
# Check if the best possible score from active beams is worse than the worst finished beam
best_active_score = -heapq.nsmallest(1, candidates)[0][0] if candidates else -float('inf')
worst_finished_score = finished_hypotheses[0][0] # Smallest score in min-heap
if len(finished_hypotheses) >= num_return_sequences and best_active_score < worst_finished_score:
logging.debug(f"Beam search early stopping at step {step}")
break
# --- Final Selection ---
# Add any remaining active beams to finished list (if they didn't end with EOS)
for seq, score in beams:
if seq[0, -1].item() != eos_idx:
penalty = ((seq.shape[1]) ** length_penalty_alpha)
final_score = score / penalty if penalty > 0 else score
heapq.heappush(finished_hypotheses, (final_score, seq))
while len(finished_hypotheses) > beam_width:
heapq.heappop(finished_hypotheses)
# Sort finished hypotheses by score (descending) and select top N
# heapq is min-heap, so nlargest gets the best scores
top_hypotheses = heapq.nlargest(num_return_sequences, finished_hypotheses)
# Return list of (sequence_tensor [1, seq_len], score) excluding SOS
return [(seq[:, 1:], score) for score, seq in top_hypotheses]
except RuntimeError as e:
logging.error(f"Runtime error during beam search: {e}", exc_info=True)
if "CUDA out of memory" in str(e) and device.type == "cuda":
gc.collect()
torch.cuda.empty_cache()
return [] # Return empty list on error
except Exception as e:
logging.error(f"Unexpected error during beam search: {e}", exc_info=True)
return []
# --- Translation Function (Handles both Greedy and Beam Search) ---
def translate(
model: pl.LightningModule,
src_sentence: str,
smiles_tokenizer: Tokenizer,
iupac_tokenizer: Tokenizer,
device: torch.device,
max_len: int,
sos_idx: int,
eos_idx: int,
pad_idx: int,
decoding_strategy: str = "Greedy",
beam_width: int = 5,
num_return_sequences: int = 1,
length_penalty_alpha: float = 0.6,
) -> list[tuple[str, float]]: # Returns list of (translation_string, score)
"""
Translates a single SMILES string using the specified decoding strategy.
"""
model.eval()
# --- Tokenize Source ---
try:
smiles_tokenizer.enable_truncation(max_length=max_len)
src_encoded = smiles_tokenizer.encode(src_sentence)
if not src_encoded or not src_encoded.ids:
logging.warning(f"Encoding failed or empty for SMILES: {src_sentence}")
return [("[Encoding Error]", 0.0)]
src_ids = src_encoded.ids
except Exception as e:
logging.error(f"Error tokenizing SMILES '{src_sentence}': {e}", exc_info=True)
return [("[Encoding Error]", 0.0)]
# --- Prepare Input Tensor and Mask ---
src = torch.tensor(src_ids, dtype=torch.long).unsqueeze(0).to(device) # [1, src_len]
src_padding_mask = (src == pad_idx).to(device) # [1, src_len]
# --- Perform Decoding ---
generation_max_len = config.get("max_len", 256)
results = [] # List to store (tensor, score) tuples
if decoding_strategy == "Greedy":
tgt_tokens_tensor = greedy_decode(
model=model,
src=src,
src_padding_mask=src_padding_mask,
max_len=generation_max_len,
sos_idx=sos_idx,
eos_idx=eos_idx,
device=device,
) # Returns tensor [1, generated_len]
if tgt_tokens_tensor is not None and tgt_tokens_tensor.numel() > 0:
results = [(tgt_tokens_tensor, 0.0)] # Assign dummy score 0.0 for greedy
else:
logging.warning(f"Greedy decode returned empty tensor for SMILES: {src_sentence}")
return [("[Decoding Error - Empty Output]", 0.0)]
elif decoding_strategy == "Beam Search":
results = beam_search_decode(
model=model,
src=src,
src_padding_mask=src_padding_mask,
max_len=generation_max_len,
sos_idx=sos_idx,
eos_idx=eos_idx,
pad_idx=pad_idx,
device=device,
beam_width=beam_width,
num_return_sequences=num_return_sequences,
length_penalty_alpha=length_penalty_alpha,
) # Returns list of (tensor, score)
if not results:
logging.warning(f"Beam search returned no results for SMILES: {src_sentence}")
return [("[Decoding Error - Empty Output]", 0.0)]
else:
logging.error(f"Unknown decoding strategy: {decoding_strategy}")
return [("[Error: Unknown Strategy]", 0.0)]
# --- Decode Generated Tokens ---
translations = []
for tgt_tokens_tensor, score in results:
if tgt_tokens_tensor is None or tgt_tokens_tensor.numel() == 0:
translations.append(("[Decoding Error - Empty Sequence]", score))
continue
tgt_tokens = tgt_tokens_tensor.flatten().cpu().numpy().tolist()
try:
# Decode using the target tokenizer, skipping special tokens
translation = iupac_tokenizer.decode(tgt_tokens, skip_special_tokens=True)
translations.append((translation, score))
except Exception as e:
logging.error(
f"Error decoding target tokens {tgt_tokens}: {e}",
exc_info=True,
)
translations.append(("[Decoding Error]", score))
return translations
# --- Model/Tokenizer Loading Function (Unchanged from previous version) ---
def load_model_and_tokenizers():
"""Loads tokenizers, config, and model from Hugging Face Hub."""
global model, smiles_tokenizer, iupac_tokenizer, device, config
if model is not None:
logging.info("Model and tokenizers already loaded.")
return
logging.info(f"Starting model and tokenizer loading from {MODEL_REPO_ID}...")
try:
# Determine device (Force CPU for stability in typical Space envs, uncomment cuda if needed)
# if torch.cuda.is_available():
# device = torch.device("cuda")
# logging.info("CUDA available, using GPU.")
# else:
device = torch.device("cpu")
logging.info("Using CPU. Modify code to enable GPU if available and desired.")
# Download files
logging.info("Downloading files from Hugging Face Hub...")
cache_dir = os.environ.get("GRADIO_CACHE", "./hf_cache")
os.makedirs(cache_dir, exist_ok=True)
logging.info(f"Using cache directory: {cache_dir}")
try:
checkpoint_path = hf_hub_download(repo_id=MODEL_REPO_ID, filename=CHECKPOINT_FILENAME, cache_dir=cache_dir)
smiles_tokenizer_path = hf_hub_download(repo_id=MODEL_REPO_ID, filename=SMILES_TOKENIZER_FILENAME, cache_dir=cache_dir)
iupac_tokenizer_path = hf_hub_download(repo_id=MODEL_REPO_ID, filename=IUPAC_TOKENIZER_FILENAME, cache_dir=cache_dir)
config_path = hf_hub_download(repo_id=MODEL_REPO_ID, filename=CONFIG_FILENAME, cache_dir=cache_dir)
# Ensure enhanced_trainer.py is downloaded or present
try:
hf_hub_download(repo_id=MODEL_REPO_ID, filename="enhanced_trainer.py", cache_dir=cache_dir, local_dir=".") # Download to current dir
logging.info("Downloaded enhanced_trainer.py")
except Exception as download_err:
if os.path.exists("enhanced_trainer.py"):
logging.warning(f"Could not download enhanced_trainer.py (maybe private?), but found local file. Using local. Error: {download_err}")
else:
raise download_err # Re-raise if not found locally either
logging.info("Files downloaded successfully.")
except Exception as e:
logging.error(f"Failed to download files from {MODEL_REPO_ID}. Check filenames and repo status. Error: {e}", exc_info=True)
raise gr.Error(f"Download Error: Could not download required files from {MODEL_REPO_ID}. Check Space logs. Error: {e}")
# Load config
logging.info("Loading configuration...")
try:
with open(config_path, "r") as f:
config = json.load(f)
logging.info("Configuration loaded.")
required_keys = ["src_vocab_size", "tgt_vocab_size", "emb_size", "nhead", "ffn_hid_dim", "num_encoder_layers", "num_decoder_layers", "dropout", "max_len", "pad_token_id", "bos_token_id", "eos_token_id"]
missing_keys = [key for key in required_keys if config.get(key) is None]
if missing_keys:
raise ValueError(f"Config file '{CONFIG_FILENAME}' is missing required keys: {missing_keys}.")
logging.info(f"Using config: { {k: config.get(k) for k in required_keys} }") # Log key values
except Exception as e:
logging.error(f"Error loading or validating config: {e}", exc_info=True)
raise gr.Error(f"Config Error: {e}")
# Load tokenizers
logging.info("Loading tokenizers...")
try:
smiles_tokenizer = Tokenizer.from_file(smiles_tokenizer_path)
iupac_tokenizer = Tokenizer.from_file(iupac_tokenizer_path)
# Basic validation (can add more checks as before)
if smiles_tokenizer.get_vocab_size() != config['src_vocab_size']:
logging.warning(f"SMILES vocab size mismatch: Tokenizer={smiles_tokenizer.get_vocab_size()}, Config={config['src_vocab_size']}")
if iupac_tokenizer.get_vocab_size() != config['tgt_vocab_size']:
logging.warning(f"IUPAC vocab size mismatch: Tokenizer={iupac_tokenizer.get_vocab_size()}, Config={config['tgt_vocab_size']}")
logging.info("Tokenizers loaded.")
except Exception as e:
logging.error(f"Failed to load tokenizers: {e}", exc_info=True)
raise gr.Error(f"Tokenizer Error: Could not load tokenizers. Check logs. Error: {e}")
# Load model
logging.info("Loading model from checkpoint...")
try:
# Ensure config keys match expected arguments of SmilesIupacLitModule.__init__
# Map config keys if necessary, e.g., if config uses 'vocab_size_src' but class expects 'src_vocab_size'
model_hparams = config.copy() # Start with all config params
# Example remapping (adjust if your config/class names differ):
# model_hparams['src_vocab_size'] = model_hparams.pop('vocab_size_src', config['src_vocab_size'])
# model_hparams['tgt_vocab_size'] = model_hparams.pop('vocab_size_tgt', config['tgt_vocab_size'])
# model_hparams['bos_idx'] = model_hparams.pop('bos_token_id', config['bos_token_id'])
# model_hparams['eos_idx'] = model_hparams.pop('eos_token_id', config['eos_token_id'])
# model_hparams['padding_idx'] = model_hparams.pop('pad_token_id', config['pad_token_id'])
# Remove keys from hparams that are not expected by the LitModule's __init__
# This depends on the exact signature of SmilesIupacLitModule
# Common ones to potentially remove if not direct args: max_len (often used elsewhere)
# Check the __init__ signature of SmilesIupacLitModule in enhanced_trainer.py
expected_args = SmilesIupacLitModule.__init__.__code__.co_varnames
hparams_to_pass = {k: v for k, v in model_hparams.items() if k in expected_args}
logging.info(f"Passing hparams to LitModule: {hparams_to_pass.keys()}")
model = SmilesIupacLitModule.load_from_checkpoint(
checkpoint_path,
map_location=device,
# devices=1, # Often not needed for inference loading
strict=False, # Set to False initially if encountering key errors
**hparams_to_pass # Pass relevant hparams from config
)
model.to(device)
model.eval()
model.freeze()
logging.info(f"Model loaded successfully from {checkpoint_path}, set to eval mode, frozen, and moved to device '{device}'.")
except FileNotFoundError:
logging.error(f"Checkpoint file not found: {checkpoint_path}")
raise gr.Error(f"Model Error: Checkpoint file '{CHECKPOINT_FILENAME}' not found.")
except Exception as e:
logging.error(f"Error loading model checkpoint {checkpoint_path}: {e}", exc_info=True)
if "size mismatch" in str(e):
error_detail = f"Potential size mismatch. Check vocab sizes in config.json (src={config.get('src_vocab_size')}, tgt={config.get('tgt_vocab_size')}) vs checkpoint."
logging.error(error_detail)
raise gr.Error(f"Model Error: {error_detail} Original error: {e}")
elif "unexpected keyword argument" in str(e) or "missing 1 required positional argument" in str(e):
error_detail = f"Mismatch between config.json keys and SmilesIupacLitModule constructor arguments. Check enhanced_trainer.py and config.json. Error: {e}"
logging.error(error_detail)
raise gr.Error(f"Model Error: {error_detail}")
elif "memory" in str(e).lower():
logging.warning("Potential OOM error during model loading.")
gc.collect()
torch.cuda.empty_cache() if device.type == "cuda" else None
raise gr.Error(f"Model Error: OOM loading model. Check Space resources. Error: {e}")
else:
raise gr.Error(f"Model Error: Failed to load checkpoint. Check logs. Error: {e}")
except gr.Error:
raise # Propagate Gradio errors directly
except Exception as e:
logging.error(f"Unexpected error during loading: {e}", exc_info=True)
raise gr.Error(f"Initialization Error: Unexpected error. Check logs. Error: {e}")
# --- Inference Function for Gradio ---
@spaces.GPU # Uncomment if using GPU and have appropriate hardware tier
def predict_iupac(smiles_string, decoding_strategy, num_beams, num_return_sequences):
"""
Performs SMILES to IUPAC translation using the loaded model and selected strategy.
"""
global model, smiles_tokenizer, iupac_tokenizer, device, config
# --- Input Validation ---
if not all([model, smiles_tokenizer, iupac_tokenizer, device, config]):
error_msg = "Error: Model or tokenizers not loaded properly. App initialization might have failed. Check Space logs."
logging.error(error_msg)
return f"Initialization Error: {error_msg}"
if not smiles_string or not smiles_string.strip():
return "Error: Please enter a valid SMILES string."
smiles_input = smiles_string.strip()
# Validate SMILES using RDKit
try:
mol = MolFromSmiles(smiles_input)
if mol is None:
return f"Error: Invalid SMILES string provided: '{smiles_input}'"
smiles_input = CanonSmiles(smiles_input) # Use canonical form
logging.info(f"Canonical SMILES: {smiles_input}")
except Exception as e:
logging.error(f"Error during SMILES validation/canonicalization: {e}", exc_info=True)
return f"Error: Could not process SMILES string '{smiles_input}'. RDKit error: {e}"
# Validate beam search parameters
if decoding_strategy == "Beam Search":
if not isinstance(num_beams, int) or num_beams <= 0:
return "Error: Beam width must be a positive integer."
if not isinstance(num_return_sequences, int) or num_return_sequences <= 0:
return "Error: Number of return sequences must be a positive integer."
if num_return_sequences > num_beams:
return f"Error: Number of return sequences ({num_return_sequences}) cannot exceed beam width ({num_beams})."
else:
# Ensure defaults are used for greedy
num_beams = 1
num_return_sequences = 1
try:
# --- Call the core translation logic ---
sos_idx = config["bos_token_id"]
eos_idx = config["eos_token_id"]
pad_idx = config["pad_token_id"]
gen_max_len = config["max_len"]
# Use fixed length penalty for now, could be another slider
length_penalty = 0.6
predicted_results = translate( # Returns list of (name, score)
model=model,
src_sentence=smiles_input,
smiles_tokenizer=smiles_tokenizer,
iupac_tokenizer=iupac_tokenizer,
device=device,
max_len=gen_max_len,
sos_idx=sos_idx,
eos_idx=eos_idx,
pad_idx=pad_idx,
decoding_strategy=decoding_strategy,
beam_width=num_beams,
num_return_sequences=num_return_sequences,
length_penalty_alpha=length_penalty,
)
logging.info(f"Prediction returned {len(predicted_results)} result(s). Strategy: {decoding_strategy}, Beams: {num_beams}, Return: {num_return_sequences}")
# --- Format Output ---
output_lines = []
output_lines.append(f"Input SMILES: {smiles_input}")
output_lines.append(f"Decoding Strategy: {decoding_strategy}")
if decoding_strategy == "Beam Search":
output_lines.append(f"Beam Width: {num_beams}")
output_lines.append(f"Returned Sequences: {len(predicted_results)}")
output_lines.append(f"Length Penalty Alpha: {length_penalty:.2f}")
output_lines.append("\n--- Predictions ---")
if not predicted_results:
output_lines.append("No predictions generated.")
else:
for i, (name, score) in enumerate(predicted_results):
if "[Error]" in name or not name:
output_lines.append(f"{i+1}. Prediction Failed: {name}")
else:
score_info = f"(Score: {score:.4f})" if decoding_strategy == "Beam Search" else ""
output_lines.append(f"{i+1}. {name} {score_info}")
return "\n".join(output_lines)
except RuntimeError as e:
logging.error(f"Runtime error during translation: {e}", exc_info=True)
gc.collect()
if device.type == 'cuda': torch.cuda.empty_cache()
return f"Runtime Error during translation: {e}. Check logs."
except Exception as e:
logging.error(f"Unexpected error during translation: {e}", exc_info=True)
return f"Unexpected Error during translation: {e}. Check logs."
# --- Load Model on App Start ---
try:
load_model_and_tokenizers()
except gr.Error as ge:
# Log the Gradio error but allow interface to load potentially showing the error message
logging.error(f"Gradio Initialization Error during load: {ge}")
# Display error in the UI if possible? Hard to do before UI is built.
# We rely on the predict function checking for loaded components.
except Exception as e:
logging.error(f"Critical error during initial model loading: {e}", exc_info=True)
# This might prevent the app from starting correctly.
# --- Create Gradio Interface ---
title = "SMILES to IUPAC Name Translator"
description = f"""
Translate a SMILES string into its IUPAC chemical name using a Transformer model ({MODEL_REPO_ID}).
Choose between **Greedy Decoding** (fastest, picks the most likely next word) and **Beam Search Decoding** (explores multiple possibilities, potentially better results, slower).
**Note:** Model loaded on **{str(device).upper() if device else 'N/A'}**. Beam search can be slow, especially with larger beam widths.
Check `config.json` in the repo for model details. SMILES input will be canonicalized using RDKit.
"""
# Use gr.Blocks for more layout control
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="cyan")) as iface:
gr.Markdown(f"# {title}")
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=1): # Input column
smiles_input = gr.Textbox(
label="SMILES String",
placeholder="Enter SMILES string (e.g., CCO, c1ccccc1)",
lines=2,
)
with gr.Accordion("Decoding Options", open=False): # Options collapsible
decode_strategy = gr.Radio(
["Greedy", "Beam Search"],
label="Decoding Strategy",
value="Greedy",
info="Greedy is faster, Beam Search may be more accurate."
)
beam_width_slider = gr.Slider(
minimum=1,
maximum=20, # Keep max reasonable for performance
step=1,
value=5,
label="Beam Width",
info="Number of beams to explore (Beam Search only)",
visible=False # Initially hidden
)
num_seq_slider = gr.Slider(
minimum=1,
maximum=5, # Keep max reasonable
step=1,
value=1,
label="Number of Results",
info="How many sequences to return (Beam Search only)",
visible=False # Initially hidden
)
submit_btn = gr.Button("Translate", variant="primary")
# --- Logic to show/hide beam search options ---
def update_beam_options(strategy):
is_beam = strategy == "Beam Search"
return {
beam_width_slider: gr.update(visible=is_beam),
num_seq_slider: gr.update(visible=is_beam)
}
decode_strategy.change(
fn=update_beam_options,
inputs=decode_strategy,
outputs=[beam_width_slider, num_seq_slider]
)
with gr.Column(scale=2): # Output column
output_text = gr.Textbox(
label="Translation Results",
lines=10, # More lines for potentially multiple results
show_copy_button=True,
# interactive=False # Output shouldn't be user-editable
)
# --- Define Event Listeners ---
submit_btn.click(
fn=predict_iupac,
inputs=[smiles_input, decode_strategy, beam_width_slider, num_seq_slider],
outputs=output_text,
api_name="translate_smiles"
)
# Trigger on Enter press in the SMILES box
smiles_input.submit(
fn=predict_iupac,
inputs=[smiles_input, decode_strategy, beam_width_slider, num_seq_slider],
outputs=output_text
)
# Add examples
gr.Examples(
examples=[
["CCO", "Greedy", 1, 1],
["c1ccccc1", "Greedy", 1, 1],
["CC(C)Br", "Beam Search", 5, 3],
["C[C@H](O)c1ccccc1", "Beam Search", 10, 5],
["INVALID_SMILES", "Greedy", 1, 1], # Example of invalid input
["N#CC(C)(C)OC(=O)C(C)=C", "Beam Search", 8, 2]
],
inputs=[smiles_input, decode_strategy, beam_width_slider, num_seq_slider], # Match inputs order
outputs=output_text, # Output component
fn=predict_iupac, # Function to run for examples
cache_examples=False, # Caching might be tricky with model state
label="Example SMILES & Settings"
)
# --- Launch the App ---
if __name__ == "__main__":
iface.launch() |