Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
# app.py
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
-
|
5 |
-
# import torch.nn.functional as F # No longer needed for greedy decode directly
|
6 |
import pytorch_lightning as pl
|
7 |
import os
|
8 |
import json
|
@@ -10,9 +9,10 @@ import logging
|
|
10 |
from tokenizers import Tokenizer
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
import gc
|
13 |
-
from rdkit.Chem import CanonSmiles
|
14 |
import spaces
|
15 |
-
|
|
|
16 |
|
17 |
# --- Configuration ---
|
18 |
MODEL_REPO_ID = (
|
@@ -31,6 +31,7 @@ logging.basicConfig(
|
|
31 |
|
32 |
# --- Load Helper Code (Only Model Definition and Mask Function Needed) ---
|
33 |
try:
|
|
|
34 |
from enhanced_trainer import SmilesIupacLitModule, generate_square_subsequent_mask
|
35 |
|
36 |
logging.info("Successfully imported from enhanced_trainer.py.")
|
@@ -58,7 +59,7 @@ device: torch.device | None = None
|
|
58 |
config: dict | None = None
|
59 |
|
60 |
|
61 |
-
# --- Greedy Decoding Logic (
|
62 |
def greedy_decode(
|
63 |
model: pl.LightningModule,
|
64 |
src: torch.Tensor,
|
@@ -70,90 +71,223 @@ def greedy_decode(
|
|
70 |
) -> torch.Tensor:
|
71 |
"""
|
72 |
Performs greedy decoding using the LightningModule's model.
|
|
|
73 |
"""
|
74 |
-
model.eval()
|
75 |
-
transformer_model = model.model
|
76 |
|
77 |
try:
|
78 |
with torch.no_grad():
|
79 |
-
|
80 |
-
memory = transformer_model.encode(
|
81 |
-
src, src_padding_mask
|
82 |
-
) # [1, src_len, emb_size]
|
83 |
memory = memory.to(device)
|
84 |
-
memory_key_padding_mask = src_padding_mask.to(memory.device)
|
85 |
|
86 |
-
|
87 |
-
# Start with the SOS token
|
88 |
-
ys = torch.ones(1, 1, dtype=torch.long, device=device).fill_(
|
89 |
-
sos_idx
|
90 |
-
) # [1, 1]
|
91 |
|
92 |
-
|
93 |
-
for _ in range(max_len - 1): # Max length limit
|
94 |
tgt_seq_len = ys.shape[1]
|
95 |
-
tgt_mask = generate_square_subsequent_mask(tgt_seq_len, device).to(
|
96 |
-
|
97 |
-
|
98 |
-
# No padding in target during generation yet
|
99 |
-
tgt_padding_mask = torch.zeros(
|
100 |
-
ys.shape, dtype=torch.bool, device=device
|
101 |
-
) # [1, curr_len]
|
102 |
-
|
103 |
-
# Decode one step
|
104 |
decoder_output = transformer_model.decode(
|
105 |
tgt=ys,
|
106 |
memory=memory,
|
107 |
tgt_mask=tgt_mask,
|
108 |
tgt_padding_mask=tgt_padding_mask,
|
109 |
memory_key_padding_mask=memory_key_padding_mask,
|
110 |
-
)
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
:, -1, :
|
116 |
-
] # Use output corresponding to the last input token
|
117 |
-
) # [1, tgt_vocab_size]
|
118 |
-
|
119 |
-
# Find the most likely next token (greedy choice)
|
120 |
-
# prob = F.log_softmax(next_token_logits, dim=-1) # Not needed for argmax
|
121 |
-
# _, next_word_id_tensor = torch.max(prob, dim=1)
|
122 |
-
next_word_id_tensor = torch.argmax(next_token_logits, dim=1) # [1]
|
123 |
-
next_word_id = next_word_id_tensor.item()
|
124 |
-
|
125 |
-
# Append the chosen token to the sequence
|
126 |
ys = torch.cat(
|
127 |
[
|
128 |
ys,
|
129 |
-
torch.ones(1, 1, dtype=torch.long, device=device).fill_(
|
130 |
-
next_word_id
|
131 |
-
),
|
132 |
],
|
133 |
dim=1,
|
134 |
-
)
|
135 |
|
136 |
-
# Stop if EOS token is generated
|
137 |
if next_word_id == eos_idx:
|
138 |
break
|
139 |
|
140 |
-
|
141 |
-
return ys[:, 1:] # Shape [1, generated_len]
|
142 |
|
143 |
except RuntimeError as e:
|
144 |
logging.error(f"Runtime error during greedy decode: {e}", exc_info=True)
|
145 |
if "CUDA out of memory" in str(e) and device.type == "cuda":
|
146 |
gc.collect()
|
147 |
torch.cuda.empty_cache()
|
148 |
-
return torch.empty(
|
149 |
-
(1, 0), dtype=torch.long, device=device
|
150 |
-
) # Return empty tensor on error
|
151 |
except Exception as e:
|
152 |
logging.error(f"Unexpected error during greedy decode: {e}", exc_info=True)
|
153 |
return torch.empty((1, 0), dtype=torch.long, device=device)
|
154 |
|
155 |
|
156 |
-
# ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
def translate(
|
158 |
model: pl.LightningModule,
|
159 |
src_sentence: str,
|
@@ -164,126 +298,139 @@ def translate(
|
|
164 |
sos_idx: int,
|
165 |
eos_idx: int,
|
166 |
pad_idx: int,
|
167 |
-
|
|
|
|
|
|
|
|
|
168 |
"""
|
169 |
-
Translates a single SMILES string using
|
170 |
"""
|
171 |
-
model.eval()
|
172 |
|
173 |
# --- Tokenize Source ---
|
174 |
try:
|
175 |
-
|
176 |
-
smiles_tokenizer.enable_truncation(
|
177 |
-
max_length=max_len
|
178 |
-
) # Use max_len for source truncation too
|
179 |
src_encoded = smiles_tokenizer.encode(src_sentence)
|
180 |
if not src_encoded or not src_encoded.ids:
|
181 |
logging.warning(f"Encoding failed or empty for SMILES: {src_sentence}")
|
182 |
-
return "[Encoding Error]"
|
183 |
-
# Use the truncated IDs directly
|
184 |
src_ids = src_encoded.ids
|
185 |
except Exception as e:
|
186 |
logging.error(f"Error tokenizing SMILES '{src_sentence}': {e}", exc_info=True)
|
187 |
-
return "[Encoding Error]"
|
188 |
|
189 |
# --- Prepare Input Tensor and Mask ---
|
190 |
-
src = (
|
191 |
-
|
192 |
-
|
193 |
-
#
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
# --- Decode Generated Tokens ---
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
|
|
|
|
231 |
|
232 |
|
233 |
-
# --- Model/Tokenizer Loading Function (Unchanged) ---
|
234 |
def load_model_and_tokenizers():
|
235 |
"""Loads tokenizers, config, and model from Hugging Face Hub."""
|
236 |
global model, smiles_tokenizer, iupac_tokenizer, device, config
|
237 |
-
if model is not None:
|
238 |
logging.info("Model and tokenizers already loaded.")
|
239 |
return
|
240 |
|
241 |
logging.info(f"Starting model and tokenizer loading from {MODEL_REPO_ID}...")
|
242 |
try:
|
243 |
-
# Determine device
|
244 |
-
if torch.cuda.is_available():
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
# logging.info("CUDA available, using GPU.")
|
251 |
-
else:
|
252 |
-
device = torch.device("cpu")
|
253 |
-
logging.info("CUDA not available, using CPU.")
|
254 |
|
255 |
# Download files
|
256 |
logging.info("Downloading files from Hugging Face Hub...")
|
|
|
|
|
|
|
|
|
257 |
try:
|
258 |
-
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
-
checkpoint_path = hf_hub_download(
|
263 |
-
repo_id=MODEL_REPO_ID, filename=CHECKPOINT_FILENAME, cache_dir=cache_dir
|
264 |
-
)
|
265 |
-
smiles_tokenizer_path = hf_hub_download(
|
266 |
-
repo_id=MODEL_REPO_ID,
|
267 |
-
filename=SMILES_TOKENIZER_FILENAME,
|
268 |
-
cache_dir=cache_dir,
|
269 |
-
)
|
270 |
-
iupac_tokenizer_path = hf_hub_download(
|
271 |
-
repo_id=MODEL_REPO_ID,
|
272 |
-
filename=IUPAC_TOKENIZER_FILENAME,
|
273 |
-
cache_dir=cache_dir,
|
274 |
-
)
|
275 |
-
config_path = hf_hub_download(
|
276 |
-
repo_id=MODEL_REPO_ID, filename=CONFIG_FILENAME, cache_dir=cache_dir
|
277 |
-
)
|
278 |
logging.info("Files downloaded successfully.")
|
279 |
except Exception as e:
|
280 |
-
logging.error(
|
281 |
-
|
282 |
-
exc_info=True,
|
283 |
-
)
|
284 |
-
raise gr.Error(
|
285 |
-
f"Download Error: Could not download required files from {MODEL_REPO_ID}. Check Space logs. Error: {e}"
|
286 |
-
)
|
287 |
|
288 |
# Load config
|
289 |
logging.info("Loading configuration...")
|
@@ -291,181 +438,149 @@ def load_model_and_tokenizers():
|
|
291 |
with open(config_path, "r") as f:
|
292 |
config = json.load(f)
|
293 |
logging.info("Configuration loaded.")
|
294 |
-
|
295 |
-
required_keys = [
|
296 |
-
"src_vocab_size", # Use the key saved in config
|
297 |
-
"tgt_vocab_size", # Use the key saved in config
|
298 |
-
"emb_size",
|
299 |
-
"nhead",
|
300 |
-
"ffn_hid_dim",
|
301 |
-
"num_encoder_layers",
|
302 |
-
"num_decoder_layers",
|
303 |
-
"dropout",
|
304 |
-
"max_len",
|
305 |
-
"pad_token_id",
|
306 |
-
"bos_token_id",
|
307 |
-
"eos_token_id",
|
308 |
-
]
|
309 |
-
# Remap if needed (example shown, adjust if your keys differ)
|
310 |
-
config_key_mapping = {
|
311 |
-
"src_vocab_size": config.get(
|
312 |
-
"src_vocab_size", config.get("src_vocab_size")
|
313 |
-
),
|
314 |
-
"tgt_vocab_size": config.get(
|
315 |
-
"tgt_vocab_size", config.get("tgt_vocab_size")
|
316 |
-
),
|
317 |
-
# Add other mappings if necessary
|
318 |
-
}
|
319 |
-
config.update(config_key_mapping)
|
320 |
-
|
321 |
missing_keys = [key for key in required_keys if config.get(key) is None]
|
322 |
if missing_keys:
|
323 |
-
raise ValueError(
|
324 |
-
|
325 |
-
f"Ensure these were saved in the hyperparameters during training."
|
326 |
-
)
|
327 |
-
|
328 |
-
logging.info(
|
329 |
-
f"Using config values: src_vocab={config['src_vocab_size']}, tgt_vocab={config['tgt_vocab_size']}, "
|
330 |
-
f"emb={config['emb_size']}, nhead={config['nhead']}, enc={config['num_encoder_layers']}, dec={config['num_decoder_layers']}, "
|
331 |
-
f"pad={config['pad_token_id']}, sos={config['bos_token_id']}, eos={config['eos_token_id']}, max_len={config['max_len']}"
|
332 |
-
)
|
333 |
-
|
334 |
-
except FileNotFoundError:
|
335 |
-
logging.error(f"Config file not found: {config_path}")
|
336 |
-
raise gr.Error(f"Config Error: Config file '{CONFIG_FILENAME}' not found.")
|
337 |
-
except json.JSONDecodeError as e:
|
338 |
-
logging.error(f"Error decoding JSON from config file {config_path}: {e}")
|
339 |
-
raise gr.Error(
|
340 |
-
f"Config Error: Could not parse '{CONFIG_FILENAME}'. Error: {e}"
|
341 |
-
)
|
342 |
-
except ValueError as e:
|
343 |
-
logging.error(f"Config validation error: {e}")
|
344 |
-
raise gr.Error(f"Config Error: {e}")
|
345 |
except Exception as e:
|
346 |
-
logging.error(f"
|
347 |
-
raise gr.Error(f"Config Error:
|
|
|
348 |
|
349 |
# Load tokenizers
|
350 |
logging.info("Loading tokenizers...")
|
351 |
try:
|
352 |
smiles_tokenizer = Tokenizer.from_file(smiles_tokenizer_path)
|
353 |
iupac_tokenizer = Tokenizer.from_file(iupac_tokenizer_path)
|
|
|
|
|
|
|
|
|
|
|
354 |
logging.info("Tokenizers loaded.")
|
355 |
-
# --- Optional: Validate Tokenizer Special Tokens Against Config ---
|
356 |
-
# (Keep validation as before, it's still useful)
|
357 |
-
pad_token = "<pad>"
|
358 |
-
sos_token = "<sos>"
|
359 |
-
eos_token = "<eos>"
|
360 |
-
unk_token = "<unk>"
|
361 |
-
issues = []
|
362 |
-
# ... (keep the validation checks as in the original code) ...
|
363 |
-
if smiles_tokenizer.token_to_id(pad_token) != config["pad_token_id"]:
|
364 |
-
issues.append(f"SMILES PAD ID mismatch")
|
365 |
-
if smiles_tokenizer.token_to_id(unk_token) is None:
|
366 |
-
issues.append("SMILES UNK token not found")
|
367 |
-
if iupac_tokenizer.token_to_id(pad_token) != config["pad_token_id"]:
|
368 |
-
issues.append(f"IUPAC PAD ID mismatch")
|
369 |
-
if iupac_tokenizer.token_to_id(sos_token) != config["bos_token_id"]:
|
370 |
-
issues.append(f"IUPAC SOS ID mismatch")
|
371 |
-
if iupac_tokenizer.token_to_id(eos_token) != config["eos_token_id"]:
|
372 |
-
issues.append(f"IUPAC EOS ID mismatch")
|
373 |
-
if iupac_tokenizer.token_to_id(unk_token) is None:
|
374 |
-
issues.append("IUPAC UNK token not found")
|
375 |
-
if issues:
|
376 |
-
logging.warning("Tokenizer validation issues: " + "; ".join(issues))
|
377 |
-
|
378 |
except Exception as e:
|
379 |
logging.error(f"Failed to load tokenizers: {e}", exc_info=True)
|
380 |
-
raise gr.Error(
|
381 |
-
f"Tokenizer Error: Could not load tokenizers. Check logs. Error: {e}"
|
382 |
-
)
|
383 |
|
384 |
# Load model
|
385 |
logging.info("Loading model from checkpoint...")
|
386 |
try:
|
387 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
388 |
model = SmilesIupacLitModule.load_from_checkpoint(
|
389 |
checkpoint_path,
|
390 |
-
**config, # Pass loaded config directly as keyword args
|
391 |
map_location=device,
|
392 |
-
devices=1,
|
393 |
-
strict=
|
|
|
394 |
)
|
395 |
|
396 |
model.to(device)
|
397 |
model.eval()
|
398 |
model.freeze()
|
399 |
-
logging.info(
|
400 |
-
f"Model loaded successfully from {checkpoint_path}, set to eval mode, frozen, and moved to device '{device}'."
|
401 |
-
)
|
402 |
|
403 |
except FileNotFoundError:
|
404 |
logging.error(f"Checkpoint file not found: {checkpoint_path}")
|
405 |
-
raise gr.Error(
|
406 |
-
f"Model Error: Checkpoint file '{CHECKPOINT_FILENAME}' not found."
|
407 |
-
)
|
408 |
except Exception as e:
|
409 |
-
logging.error(
|
410 |
-
f"Error loading model checkpoint {checkpoint_path}: {e}", exc_info=True
|
411 |
-
)
|
412 |
if "size mismatch" in str(e):
|
413 |
error_detail = f"Potential size mismatch. Check vocab sizes in config.json (src={config.get('src_vocab_size')}, tgt={config.get('tgt_vocab_size')}) vs checkpoint."
|
414 |
logging.error(error_detail)
|
415 |
raise gr.Error(f"Model Error: {error_detail} Original error: {e}")
|
|
|
|
|
|
|
|
|
416 |
elif "memory" in str(e).lower():
|
417 |
logging.warning("Potential OOM error during model loading.")
|
418 |
gc.collect()
|
419 |
torch.cuda.empty_cache() if device.type == "cuda" else None
|
420 |
-
raise gr.Error(
|
421 |
-
f"Model Error: OOM loading model. Check Space resources. Error: {e}"
|
422 |
-
)
|
423 |
else:
|
424 |
-
raise gr.Error(
|
425 |
-
f"Model Error: Failed to load checkpoint. Check logs. Error: {e}"
|
426 |
-
)
|
427 |
|
428 |
except gr.Error:
|
429 |
-
raise
|
430 |
except Exception as e:
|
431 |
logging.error(f"Unexpected error during loading: {e}", exc_info=True)
|
432 |
-
raise gr.Error(
|
433 |
-
f"Initialization Error: Unexpected error. Check logs. Error: {e}"
|
434 |
-
)
|
435 |
|
436 |
|
437 |
-
# --- Inference Function for Gradio
|
438 |
-
@spaces.GPU
|
439 |
-
def predict_iupac(smiles_string):
|
440 |
"""
|
441 |
-
Performs SMILES to IUPAC translation using the loaded model and
|
442 |
"""
|
443 |
-
try:
|
444 |
-
smiles_string = CanonSmiles(smiles_string)
|
445 |
-
except Exception as e:
|
446 |
-
logging.error(f"Error during SMILES canonicalization: {e}", exc_info=True)
|
447 |
-
return f"Error: {e}"
|
448 |
global model, smiles_tokenizer, iupac_tokenizer, device, config
|
449 |
|
|
|
450 |
if not all([model, smiles_tokenizer, iupac_tokenizer, device, config]):
|
451 |
error_msg = "Error: Model or tokenizers not loaded properly. App initialization might have failed. Check Space logs."
|
452 |
logging.error(error_msg)
|
453 |
-
return f"Error: {error_msg}"
|
454 |
|
455 |
if not smiles_string or not smiles_string.strip():
|
456 |
-
|
457 |
-
return f"Error: {error_msg}" # Return single error string
|
458 |
|
459 |
smiles_input = smiles_string.strip()
|
460 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
461 |
try:
|
462 |
-
# --- Call the core translation logic
|
463 |
sos_idx = config["bos_token_id"]
|
464 |
eos_idx = config["eos_token_id"]
|
465 |
pad_idx = config["pad_token_id"]
|
466 |
gen_max_len = config["max_len"]
|
|
|
|
|
467 |
|
468 |
-
|
469 |
model=model,
|
470 |
src_sentence=smiles_input,
|
471 |
smiles_tokenizer=smiles_tokenizer,
|
@@ -475,100 +590,165 @@ def predict_iupac(smiles_string):
|
|
475 |
sos_idx=sos_idx,
|
476 |
eos_idx=eos_idx,
|
477 |
pad_idx=pad_idx,
|
|
|
|
|
|
|
|
|
478 |
)
|
479 |
-
logging.info(f"Prediction returned: {
|
480 |
|
481 |
# --- Format Output ---
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
else:
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
|
|
|
|
495 |
|
496 |
except RuntimeError as e:
|
497 |
logging.error(f"Runtime error during translation: {e}", exc_info=True)
|
498 |
-
|
499 |
-
|
|
|
500 |
except Exception as e:
|
501 |
logging.error(f"Unexpected error during translation: {e}", exc_info=True)
|
502 |
-
|
503 |
-
return f"Error: {error_msg}" # Return single error string
|
504 |
|
505 |
|
506 |
# --- Load Model on App Start ---
|
507 |
try:
|
508 |
load_model_and_tokenizers()
|
509 |
except gr.Error as ge:
|
510 |
-
|
511 |
-
|
|
|
|
|
512 |
except Exception as e:
|
513 |
logging.error(f"Critical error during initial model loading: {e}", exc_info=True)
|
514 |
-
#
|
515 |
|
516 |
|
517 |
-
# --- Create Gradio Interface
|
518 |
-
title = "SMILES to IUPAC Name Translator
|
519 |
description = f"""
|
520 |
-
|
521 |
-
|
522 |
-
**Note:** Model loaded on **{str(device).upper() if device else
|
|
|
523 |
"""
|
524 |
|
525 |
-
|
526 |
-
|
527 |
-
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="cyan")) as iface: # 'iface' is created here
|
528 |
gr.Markdown(f"# {title}")
|
529 |
gr.Markdown(description)
|
530 |
|
531 |
with gr.Row():
|
532 |
-
with gr.Column(scale=1): #
|
533 |
smiles_input = gr.Textbox(
|
534 |
label="SMILES String",
|
535 |
-
placeholder="Enter SMILES string
|
536 |
-
lines=
|
537 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
538 |
)
|
539 |
-
submit_btn = gr.Button("Translate")
|
540 |
|
541 |
-
|
|
|
542 |
output_text = gr.Textbox(
|
543 |
-
label="
|
544 |
-
lines=
|
545 |
show_copy_button=True,
|
546 |
# interactive=False # Output shouldn't be user-editable
|
547 |
)
|
548 |
|
549 |
-
# --- Define Event Listeners
|
550 |
-
# When the button is clicked, call predict_iupac
|
551 |
submit_btn.click(
|
552 |
fn=predict_iupac,
|
553 |
-
inputs=smiles_input,
|
554 |
outputs=output_text,
|
555 |
-
api_name="translate_smiles"
|
556 |
)
|
557 |
|
558 |
-
#
|
559 |
-
# If you uncomment this, consider adding a debounce or throttle if using Gradio >= 3.20
|
560 |
-
# smiles_input.change(fn=predict_iupac, inputs=smiles_input, outputs=output_text)
|
561 |
-
|
562 |
-
# Optional: Trigger prediction when text is submitted (e.g., pressing Enter)
|
563 |
smiles_input.submit(
|
564 |
fn=predict_iupac,
|
565 |
-
inputs=smiles_input,
|
566 |
outputs=output_text
|
567 |
)
|
568 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
569 |
# --- Launch the App ---
|
570 |
-
# The 'iface' variable is already defined by the 'with gr.Blocks(...)' statement
|
571 |
if __name__ == "__main__":
|
572 |
-
# You can add server_name="0.0.0.0" if running in Docker/Spaces
|
573 |
-
# and share=True if you want a public link (usually handled by Spaces automatically)
|
574 |
iface.launch()
|
|
|
1 |
# app.py
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
+
import torch.nn.functional as F # Needed for log_softmax in beam search
|
|
|
5 |
import pytorch_lightning as pl
|
6 |
import os
|
7 |
import json
|
|
|
9 |
from tokenizers import Tokenizer
|
10 |
from huggingface_hub import hf_hub_download
|
11 |
import gc
|
12 |
+
from rdkit.Chem import CanonSmiles, MolFromSmiles # Added MolFromSmiles for validation
|
13 |
import spaces
|
14 |
+
import heapq # For beam search priority queue
|
15 |
+
import math # For log probabilities
|
16 |
|
17 |
# --- Configuration ---
|
18 |
MODEL_REPO_ID = (
|
|
|
31 |
|
32 |
# --- Load Helper Code (Only Model Definition and Mask Function Needed) ---
|
33 |
try:
|
34 |
+
# Ensure enhanced_trainer.py is present in the repository root
|
35 |
from enhanced_trainer import SmilesIupacLitModule, generate_square_subsequent_mask
|
36 |
|
37 |
logging.info("Successfully imported from enhanced_trainer.py.")
|
|
|
59 |
config: dict | None = None
|
60 |
|
61 |
|
62 |
+
# --- Greedy Decoding Logic (Unchanged) ---
|
63 |
def greedy_decode(
|
64 |
model: pl.LightningModule,
|
65 |
src: torch.Tensor,
|
|
|
71 |
) -> torch.Tensor:
|
72 |
"""
|
73 |
Performs greedy decoding using the LightningModule's model.
|
74 |
+
Returns a tensor of shape [1, sequence_length].
|
75 |
"""
|
76 |
+
model.eval()
|
77 |
+
transformer_model = model.model
|
78 |
|
79 |
try:
|
80 |
with torch.no_grad():
|
81 |
+
memory = transformer_model.encode(src, src_padding_mask)
|
|
|
|
|
|
|
82 |
memory = memory.to(device)
|
83 |
+
memory_key_padding_mask = src_padding_mask.to(memory.device)
|
84 |
|
85 |
+
ys = torch.ones(1, 1, dtype=torch.long, device=device).fill_(sos_idx)
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
for _ in range(max_len - 1):
|
|
|
88 |
tgt_seq_len = ys.shape[1]
|
89 |
+
tgt_mask = generate_square_subsequent_mask(tgt_seq_len, device).to(device)
|
90 |
+
tgt_padding_mask = torch.zeros(ys.shape, dtype=torch.bool, device=device)
|
91 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
decoder_output = transformer_model.decode(
|
93 |
tgt=ys,
|
94 |
memory=memory,
|
95 |
tgt_mask=tgt_mask,
|
96 |
tgt_padding_mask=tgt_padding_mask,
|
97 |
memory_key_padding_mask=memory_key_padding_mask,
|
98 |
+
)
|
99 |
+
|
100 |
+
next_token_logits = transformer_model.generator(decoder_output[:, -1, :])
|
101 |
+
next_word_id = torch.argmax(next_token_logits, dim=1).item()
|
102 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
ys = torch.cat(
|
104 |
[
|
105 |
ys,
|
106 |
+
torch.ones(1, 1, dtype=torch.long, device=device).fill_(next_word_id),
|
|
|
|
|
107 |
],
|
108 |
dim=1,
|
109 |
+
)
|
110 |
|
|
|
111 |
if next_word_id == eos_idx:
|
112 |
break
|
113 |
|
114 |
+
return ys[:, 1:] # Exclude SOS
|
|
|
115 |
|
116 |
except RuntimeError as e:
|
117 |
logging.error(f"Runtime error during greedy decode: {e}", exc_info=True)
|
118 |
if "CUDA out of memory" in str(e) and device.type == "cuda":
|
119 |
gc.collect()
|
120 |
torch.cuda.empty_cache()
|
121 |
+
return torch.empty((1, 0), dtype=torch.long, device=device)
|
|
|
|
|
122 |
except Exception as e:
|
123 |
logging.error(f"Unexpected error during greedy decode: {e}", exc_info=True)
|
124 |
return torch.empty((1, 0), dtype=torch.long, device=device)
|
125 |
|
126 |
|
127 |
+
# --- Beam Search Decoding Logic ---
|
128 |
+
def beam_search_decode(
|
129 |
+
model: pl.LightningModule,
|
130 |
+
src: torch.Tensor,
|
131 |
+
src_padding_mask: torch.Tensor,
|
132 |
+
max_len: int,
|
133 |
+
sos_idx: int,
|
134 |
+
eos_idx: int,
|
135 |
+
pad_idx: int, # Needed for padding shorter beams if batching
|
136 |
+
device: torch.device,
|
137 |
+
beam_width: int,
|
138 |
+
num_return_sequences: int = 1,
|
139 |
+
length_penalty_alpha: float = 0.6, # Add length penalty
|
140 |
+
) -> list[tuple[torch.Tensor, float]]:
|
141 |
+
"""
|
142 |
+
Performs beam search decoding.
|
143 |
+
Returns a list of tuples: (sequence_tensor [1, seq_len], score)
|
144 |
+
"""
|
145 |
+
model.eval()
|
146 |
+
transformer_model = model.model
|
147 |
+
num_return_sequences = min(beam_width, num_return_sequences) # Cannot return more than beam width
|
148 |
+
|
149 |
+
try:
|
150 |
+
with torch.no_grad():
|
151 |
+
# --- Encode Source (Once) ---
|
152 |
+
memory = transformer_model.encode(src, src_padding_mask) # [1, src_len, emb_size]
|
153 |
+
memory = memory.to(device)
|
154 |
+
memory_key_padding_mask = src_padding_mask.to(memory.device) # [1, src_len]
|
155 |
+
|
156 |
+
# --- Initialize Beams ---
|
157 |
+
# Each beam: (sequence_tensor [1, current_len], score (log_prob))
|
158 |
+
initial_beam = (
|
159 |
+
torch.ones(1, 1, dtype=torch.long, device=device).fill_(sos_idx),
|
160 |
+
0.0, # Initial score (log probability)
|
161 |
+
)
|
162 |
+
beams = [initial_beam]
|
163 |
+
finished_hypotheses = [] # Store finished sequences: (score, sequence_tensor)
|
164 |
+
|
165 |
+
# --- Decoding Loop ---
|
166 |
+
for step in range(max_len - 1):
|
167 |
+
if not beams: # Stop if no active beams left
|
168 |
+
break
|
169 |
+
|
170 |
+
# Use a min-heap to keep track of candidates for the *next* step
|
171 |
+
# Store (-score, next_token_id, beam_index) - use negative score for max-heap behavior
|
172 |
+
candidates = []
|
173 |
+
|
174 |
+
# Process current beams (can be batched for efficiency, but simpler loop shown here)
|
175 |
+
# For batching: stack ys, expand memory, create masks for the batch
|
176 |
+
for beam_idx, (current_seq, current_score) in enumerate(beams):
|
177 |
+
if current_seq[0, -1].item() == eos_idx: # Beam already finished
|
178 |
+
# Add length penalty before storing
|
179 |
+
penalty = ((current_seq.shape[1]) ** length_penalty_alpha)
|
180 |
+
final_score = current_score / penalty if penalty > 0 else current_score
|
181 |
+
heapq.heappush(finished_hypotheses, (final_score, current_seq))
|
182 |
+
# Prune finished hypotheses if we have enough
|
183 |
+
while len(finished_hypotheses) > beam_width:
|
184 |
+
heapq.heappop(finished_hypotheses) # Remove lowest score
|
185 |
+
continue # Don't expand finished beams
|
186 |
+
|
187 |
+
# --- Prepare input for this beam ---
|
188 |
+
ys = current_seq # [1, current_len]
|
189 |
+
tgt_seq_len = ys.shape[1]
|
190 |
+
tgt_mask = generate_square_subsequent_mask(tgt_seq_len, device).to(device)
|
191 |
+
tgt_padding_mask = torch.zeros(ys.shape, dtype=torch.bool, device=device)
|
192 |
+
|
193 |
+
# --- Decode one step ---
|
194 |
+
# Note: memory and memory_key_padding_mask are reused
|
195 |
+
decoder_output = transformer_model.decode(
|
196 |
+
tgt=ys,
|
197 |
+
memory=memory, # Needs expansion if batching beams
|
198 |
+
tgt_mask=tgt_mask,
|
199 |
+
tgt_padding_mask=tgt_padding_mask,
|
200 |
+
memory_key_padding_mask=memory_key_padding_mask, # Needs expansion if batching
|
201 |
+
) # [1, current_len, emb_size]
|
202 |
+
|
203 |
+
# Get logits for the *next* token
|
204 |
+
next_token_logits = transformer_model.generator(
|
205 |
+
decoder_output[:, -1, :]
|
206 |
+
) # [1, tgt_vocab_size]
|
207 |
+
|
208 |
+
# Calculate log probabilities
|
209 |
+
log_probs = F.log_softmax(next_token_logits, dim=-1) # [1, tgt_vocab_size]
|
210 |
+
|
211 |
+
# Get top K candidates for *this* beam
|
212 |
+
# Adding current_score makes it the total path score
|
213 |
+
top_k_log_probs, top_k_indices = torch.topk(log_probs + current_score, beam_width, dim=1)
|
214 |
+
|
215 |
+
# Add candidates to the list for selection across all beams
|
216 |
+
for i in range(beam_width):
|
217 |
+
token_id = top_k_indices[0, i].item()
|
218 |
+
score = top_k_log_probs[0, i].item()
|
219 |
+
# Store (-score, token_id, beam_idx) for heap
|
220 |
+
heapq.heappush(candidates, (-score, token_id, beam_idx))
|
221 |
+
# Prune candidates heap if it exceeds beam_width * beam_width (can optimize)
|
222 |
+
# A simpler pruning: keep only top N overall candidates later
|
223 |
+
|
224 |
+
# --- Select Top K Beams for Next Step ---
|
225 |
+
new_beams = []
|
226 |
+
# Ensure we don't exceed beam_width overall candidates
|
227 |
+
num_candidates_to_consider = min(len(candidates), beam_width * len(beams)) # Rough upper bound
|
228 |
+
|
229 |
+
# Use heap to efficiently get top k candidates overall
|
230 |
+
top_candidates = heapq.nsmallest(beam_width, candidates) # Get k smallest (-score) -> largest score
|
231 |
+
|
232 |
+
added_sequences = set() # Prevent duplicate sequences if paths converge
|
233 |
+
|
234 |
+
for neg_score, token_id, beam_idx in top_candidates:
|
235 |
+
original_seq, _ = beams[beam_idx]
|
236 |
+
new_seq = torch.cat(
|
237 |
+
[
|
238 |
+
original_seq,
|
239 |
+
torch.ones(1, 1, dtype=torch.long, device=device).fill_(token_id),
|
240 |
+
],
|
241 |
+
dim=1,
|
242 |
+
) # [1, current_len + 1]
|
243 |
+
|
244 |
+
# Avoid adding duplicates (optional, but good practice)
|
245 |
+
seq_tuple = tuple(new_seq.flatten().tolist())
|
246 |
+
if seq_tuple not in added_sequences:
|
247 |
+
new_beams.append((new_seq, -neg_score)) # Store positive score
|
248 |
+
added_sequences.add(seq_tuple)
|
249 |
+
|
250 |
+
beams = new_beams # Update active beams
|
251 |
+
|
252 |
+
# Early stopping: If top beam is finished and we have enough results
|
253 |
+
if finished_hypotheses:
|
254 |
+
# Check if the best possible score from active beams is worse than the worst finished beam
|
255 |
+
best_active_score = -heapq.nsmallest(1, candidates)[0][0] if candidates else -float('inf')
|
256 |
+
worst_finished_score = finished_hypotheses[0][0] # Smallest score in min-heap
|
257 |
+
if len(finished_hypotheses) >= num_return_sequences and best_active_score < worst_finished_score:
|
258 |
+
logging.debug(f"Beam search early stopping at step {step}")
|
259 |
+
break
|
260 |
+
|
261 |
+
|
262 |
+
# --- Final Selection ---
|
263 |
+
# Add any remaining active beams to finished list (if they didn't end with EOS)
|
264 |
+
for seq, score in beams:
|
265 |
+
if seq[0, -1].item() != eos_idx:
|
266 |
+
penalty = ((seq.shape[1]) ** length_penalty_alpha)
|
267 |
+
final_score = score / penalty if penalty > 0 else score
|
268 |
+
heapq.heappush(finished_hypotheses, (final_score, seq))
|
269 |
+
while len(finished_hypotheses) > beam_width:
|
270 |
+
heapq.heappop(finished_hypotheses)
|
271 |
+
|
272 |
+
# Sort finished hypotheses by score (descending) and select top N
|
273 |
+
# heapq is min-heap, so nlargest gets the best scores
|
274 |
+
top_hypotheses = heapq.nlargest(num_return_sequences, finished_hypotheses)
|
275 |
+
|
276 |
+
# Return list of (sequence_tensor [1, seq_len], score) excluding SOS
|
277 |
+
return [(seq[:, 1:], score) for score, seq in top_hypotheses]
|
278 |
+
|
279 |
+
except RuntimeError as e:
|
280 |
+
logging.error(f"Runtime error during beam search: {e}", exc_info=True)
|
281 |
+
if "CUDA out of memory" in str(e) and device.type == "cuda":
|
282 |
+
gc.collect()
|
283 |
+
torch.cuda.empty_cache()
|
284 |
+
return [] # Return empty list on error
|
285 |
+
except Exception as e:
|
286 |
+
logging.error(f"Unexpected error during beam search: {e}", exc_info=True)
|
287 |
+
return []
|
288 |
+
|
289 |
+
|
290 |
+
# --- Translation Function (Handles both Greedy and Beam Search) ---
|
291 |
def translate(
|
292 |
model: pl.LightningModule,
|
293 |
src_sentence: str,
|
|
|
298 |
sos_idx: int,
|
299 |
eos_idx: int,
|
300 |
pad_idx: int,
|
301 |
+
decoding_strategy: str = "Greedy",
|
302 |
+
beam_width: int = 5,
|
303 |
+
num_return_sequences: int = 1,
|
304 |
+
length_penalty_alpha: float = 0.6,
|
305 |
+
) -> list[tuple[str, float]]: # Returns list of (translation_string, score)
|
306 |
"""
|
307 |
+
Translates a single SMILES string using the specified decoding strategy.
|
308 |
"""
|
309 |
+
model.eval()
|
310 |
|
311 |
# --- Tokenize Source ---
|
312 |
try:
|
313 |
+
smiles_tokenizer.enable_truncation(max_length=max_len)
|
|
|
|
|
|
|
314 |
src_encoded = smiles_tokenizer.encode(src_sentence)
|
315 |
if not src_encoded or not src_encoded.ids:
|
316 |
logging.warning(f"Encoding failed or empty for SMILES: {src_sentence}")
|
317 |
+
return [("[Encoding Error]", 0.0)]
|
|
|
318 |
src_ids = src_encoded.ids
|
319 |
except Exception as e:
|
320 |
logging.error(f"Error tokenizing SMILES '{src_sentence}': {e}", exc_info=True)
|
321 |
+
return [("[Encoding Error]", 0.0)]
|
322 |
|
323 |
# --- Prepare Input Tensor and Mask ---
|
324 |
+
src = torch.tensor(src_ids, dtype=torch.long).unsqueeze(0).to(device) # [1, src_len]
|
325 |
+
src_padding_mask = (src == pad_idx).to(device) # [1, src_len]
|
326 |
+
|
327 |
+
# --- Perform Decoding ---
|
328 |
+
generation_max_len = config.get("max_len", 256)
|
329 |
+
results = [] # List to store (tensor, score) tuples
|
330 |
+
|
331 |
+
if decoding_strategy == "Greedy":
|
332 |
+
tgt_tokens_tensor = greedy_decode(
|
333 |
+
model=model,
|
334 |
+
src=src,
|
335 |
+
src_padding_mask=src_padding_mask,
|
336 |
+
max_len=generation_max_len,
|
337 |
+
sos_idx=sos_idx,
|
338 |
+
eos_idx=eos_idx,
|
339 |
+
device=device,
|
340 |
+
) # Returns tensor [1, generated_len]
|
341 |
+
if tgt_tokens_tensor is not None and tgt_tokens_tensor.numel() > 0:
|
342 |
+
results = [(tgt_tokens_tensor, 0.0)] # Assign dummy score 0.0 for greedy
|
343 |
+
else:
|
344 |
+
logging.warning(f"Greedy decode returned empty tensor for SMILES: {src_sentence}")
|
345 |
+
return [("[Decoding Error - Empty Output]", 0.0)]
|
346 |
+
|
347 |
+
elif decoding_strategy == "Beam Search":
|
348 |
+
results = beam_search_decode(
|
349 |
+
model=model,
|
350 |
+
src=src,
|
351 |
+
src_padding_mask=src_padding_mask,
|
352 |
+
max_len=generation_max_len,
|
353 |
+
sos_idx=sos_idx,
|
354 |
+
eos_idx=eos_idx,
|
355 |
+
pad_idx=pad_idx,
|
356 |
+
device=device,
|
357 |
+
beam_width=beam_width,
|
358 |
+
num_return_sequences=num_return_sequences,
|
359 |
+
length_penalty_alpha=length_penalty_alpha,
|
360 |
+
) # Returns list of (tensor, score)
|
361 |
+
if not results:
|
362 |
+
logging.warning(f"Beam search returned no results for SMILES: {src_sentence}")
|
363 |
+
return [("[Decoding Error - Empty Output]", 0.0)]
|
364 |
+
else:
|
365 |
+
logging.error(f"Unknown decoding strategy: {decoding_strategy}")
|
366 |
+
return [("[Error: Unknown Strategy]", 0.0)]
|
367 |
+
|
368 |
|
369 |
# --- Decode Generated Tokens ---
|
370 |
+
translations = []
|
371 |
+
for tgt_tokens_tensor, score in results:
|
372 |
+
if tgt_tokens_tensor is None or tgt_tokens_tensor.numel() == 0:
|
373 |
+
translations.append(("[Decoding Error - Empty Sequence]", score))
|
374 |
+
continue
|
375 |
|
376 |
+
tgt_tokens = tgt_tokens_tensor.flatten().cpu().numpy().tolist()
|
377 |
+
try:
|
378 |
+
# Decode using the target tokenizer, skipping special tokens
|
379 |
+
translation = iupac_tokenizer.decode(tgt_tokens, skip_special_tokens=True)
|
380 |
+
translations.append((translation, score))
|
381 |
+
except Exception as e:
|
382 |
+
logging.error(
|
383 |
+
f"Error decoding target tokens {tgt_tokens}: {e}",
|
384 |
+
exc_info=True,
|
385 |
+
)
|
386 |
+
translations.append(("[Decoding Error]", score))
|
387 |
+
|
388 |
+
return translations
|
389 |
|
390 |
|
391 |
+
# --- Model/Tokenizer Loading Function (Unchanged from previous version) ---
|
392 |
def load_model_and_tokenizers():
|
393 |
"""Loads tokenizers, config, and model from Hugging Face Hub."""
|
394 |
global model, smiles_tokenizer, iupac_tokenizer, device, config
|
395 |
+
if model is not None:
|
396 |
logging.info("Model and tokenizers already loaded.")
|
397 |
return
|
398 |
|
399 |
logging.info(f"Starting model and tokenizer loading from {MODEL_REPO_ID}...")
|
400 |
try:
|
401 |
+
# Determine device (Force CPU for stability in typical Space envs, uncomment cuda if needed)
|
402 |
+
# if torch.cuda.is_available():
|
403 |
+
# device = torch.device("cuda")
|
404 |
+
# logging.info("CUDA available, using GPU.")
|
405 |
+
# else:
|
406 |
+
device = torch.device("cpu")
|
407 |
+
logging.info("Using CPU. Modify code to enable GPU if available and desired.")
|
|
|
|
|
|
|
|
|
408 |
|
409 |
# Download files
|
410 |
logging.info("Downloading files from Hugging Face Hub...")
|
411 |
+
cache_dir = os.environ.get("GRADIO_CACHE", "./hf_cache")
|
412 |
+
os.makedirs(cache_dir, exist_ok=True)
|
413 |
+
logging.info(f"Using cache directory: {cache_dir}")
|
414 |
+
|
415 |
try:
|
416 |
+
checkpoint_path = hf_hub_download(repo_id=MODEL_REPO_ID, filename=CHECKPOINT_FILENAME, cache_dir=cache_dir)
|
417 |
+
smiles_tokenizer_path = hf_hub_download(repo_id=MODEL_REPO_ID, filename=SMILES_TOKENIZER_FILENAME, cache_dir=cache_dir)
|
418 |
+
iupac_tokenizer_path = hf_hub_download(repo_id=MODEL_REPO_ID, filename=IUPAC_TOKENIZER_FILENAME, cache_dir=cache_dir)
|
419 |
+
config_path = hf_hub_download(repo_id=MODEL_REPO_ID, filename=CONFIG_FILENAME, cache_dir=cache_dir)
|
420 |
+
# Ensure enhanced_trainer.py is downloaded or present
|
421 |
+
try:
|
422 |
+
hf_hub_download(repo_id=MODEL_REPO_ID, filename="enhanced_trainer.py", cache_dir=cache_dir, local_dir=".") # Download to current dir
|
423 |
+
logging.info("Downloaded enhanced_trainer.py")
|
424 |
+
except Exception as download_err:
|
425 |
+
if os.path.exists("enhanced_trainer.py"):
|
426 |
+
logging.warning(f"Could not download enhanced_trainer.py (maybe private?), but found local file. Using local. Error: {download_err}")
|
427 |
+
else:
|
428 |
+
raise download_err # Re-raise if not found locally either
|
429 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
430 |
logging.info("Files downloaded successfully.")
|
431 |
except Exception as e:
|
432 |
+
logging.error(f"Failed to download files from {MODEL_REPO_ID}. Check filenames and repo status. Error: {e}", exc_info=True)
|
433 |
+
raise gr.Error(f"Download Error: Could not download required files from {MODEL_REPO_ID}. Check Space logs. Error: {e}")
|
|
|
|
|
|
|
|
|
|
|
434 |
|
435 |
# Load config
|
436 |
logging.info("Loading configuration...")
|
|
|
438 |
with open(config_path, "r") as f:
|
439 |
config = json.load(f)
|
440 |
logging.info("Configuration loaded.")
|
441 |
+
required_keys = ["src_vocab_size", "tgt_vocab_size", "emb_size", "nhead", "ffn_hid_dim", "num_encoder_layers", "num_decoder_layers", "dropout", "max_len", "pad_token_id", "bos_token_id", "eos_token_id"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
442 |
missing_keys = [key for key in required_keys if config.get(key) is None]
|
443 |
if missing_keys:
|
444 |
+
raise ValueError(f"Config file '{CONFIG_FILENAME}' is missing required keys: {missing_keys}.")
|
445 |
+
logging.info(f"Using config: { {k: config.get(k) for k in required_keys} }") # Log key values
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
446 |
except Exception as e:
|
447 |
+
logging.error(f"Error loading or validating config: {e}", exc_info=True)
|
448 |
+
raise gr.Error(f"Config Error: {e}")
|
449 |
+
|
450 |
|
451 |
# Load tokenizers
|
452 |
logging.info("Loading tokenizers...")
|
453 |
try:
|
454 |
smiles_tokenizer = Tokenizer.from_file(smiles_tokenizer_path)
|
455 |
iupac_tokenizer = Tokenizer.from_file(iupac_tokenizer_path)
|
456 |
+
# Basic validation (can add more checks as before)
|
457 |
+
if smiles_tokenizer.get_vocab_size() != config['src_vocab_size']:
|
458 |
+
logging.warning(f"SMILES vocab size mismatch: Tokenizer={smiles_tokenizer.get_vocab_size()}, Config={config['src_vocab_size']}")
|
459 |
+
if iupac_tokenizer.get_vocab_size() != config['tgt_vocab_size']:
|
460 |
+
logging.warning(f"IUPAC vocab size mismatch: Tokenizer={iupac_tokenizer.get_vocab_size()}, Config={config['tgt_vocab_size']}")
|
461 |
logging.info("Tokenizers loaded.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
462 |
except Exception as e:
|
463 |
logging.error(f"Failed to load tokenizers: {e}", exc_info=True)
|
464 |
+
raise gr.Error(f"Tokenizer Error: Could not load tokenizers. Check logs. Error: {e}")
|
|
|
|
|
465 |
|
466 |
# Load model
|
467 |
logging.info("Loading model from checkpoint...")
|
468 |
try:
|
469 |
+
# Ensure config keys match expected arguments of SmilesIupacLitModule.__init__
|
470 |
+
# Map config keys if necessary, e.g., if config uses 'vocab_size_src' but class expects 'src_vocab_size'
|
471 |
+
model_hparams = config.copy() # Start with all config params
|
472 |
+
|
473 |
+
# Example remapping (adjust if your config/class names differ):
|
474 |
+
# model_hparams['src_vocab_size'] = model_hparams.pop('vocab_size_src', config['src_vocab_size'])
|
475 |
+
# model_hparams['tgt_vocab_size'] = model_hparams.pop('vocab_size_tgt', config['tgt_vocab_size'])
|
476 |
+
# model_hparams['bos_idx'] = model_hparams.pop('bos_token_id', config['bos_token_id'])
|
477 |
+
# model_hparams['eos_idx'] = model_hparams.pop('eos_token_id', config['eos_token_id'])
|
478 |
+
# model_hparams['padding_idx'] = model_hparams.pop('pad_token_id', config['pad_token_id'])
|
479 |
+
|
480 |
+
# Remove keys from hparams that are not expected by the LitModule's __init__
|
481 |
+
# This depends on the exact signature of SmilesIupacLitModule
|
482 |
+
# Common ones to potentially remove if not direct args: max_len (often used elsewhere)
|
483 |
+
# Check the __init__ signature of SmilesIupacLitModule in enhanced_trainer.py
|
484 |
+
expected_args = SmilesIupacLitModule.__init__.__code__.co_varnames
|
485 |
+
hparams_to_pass = {k: v for k, v in model_hparams.items() if k in expected_args}
|
486 |
+
logging.info(f"Passing hparams to LitModule: {hparams_to_pass.keys()}")
|
487 |
+
|
488 |
+
|
489 |
model = SmilesIupacLitModule.load_from_checkpoint(
|
490 |
checkpoint_path,
|
|
|
491 |
map_location=device,
|
492 |
+
# devices=1, # Often not needed for inference loading
|
493 |
+
strict=False, # Set to False initially if encountering key errors
|
494 |
+
**hparams_to_pass # Pass relevant hparams from config
|
495 |
)
|
496 |
|
497 |
model.to(device)
|
498 |
model.eval()
|
499 |
model.freeze()
|
500 |
+
logging.info(f"Model loaded successfully from {checkpoint_path}, set to eval mode, frozen, and moved to device '{device}'.")
|
|
|
|
|
501 |
|
502 |
except FileNotFoundError:
|
503 |
logging.error(f"Checkpoint file not found: {checkpoint_path}")
|
504 |
+
raise gr.Error(f"Model Error: Checkpoint file '{CHECKPOINT_FILENAME}' not found.")
|
|
|
|
|
505 |
except Exception as e:
|
506 |
+
logging.error(f"Error loading model checkpoint {checkpoint_path}: {e}", exc_info=True)
|
|
|
|
|
507 |
if "size mismatch" in str(e):
|
508 |
error_detail = f"Potential size mismatch. Check vocab sizes in config.json (src={config.get('src_vocab_size')}, tgt={config.get('tgt_vocab_size')}) vs checkpoint."
|
509 |
logging.error(error_detail)
|
510 |
raise gr.Error(f"Model Error: {error_detail} Original error: {e}")
|
511 |
+
elif "unexpected keyword argument" in str(e) or "missing 1 required positional argument" in str(e):
|
512 |
+
error_detail = f"Mismatch between config.json keys and SmilesIupacLitModule constructor arguments. Check enhanced_trainer.py and config.json. Error: {e}"
|
513 |
+
logging.error(error_detail)
|
514 |
+
raise gr.Error(f"Model Error: {error_detail}")
|
515 |
elif "memory" in str(e).lower():
|
516 |
logging.warning("Potential OOM error during model loading.")
|
517 |
gc.collect()
|
518 |
torch.cuda.empty_cache() if device.type == "cuda" else None
|
519 |
+
raise gr.Error(f"Model Error: OOM loading model. Check Space resources. Error: {e}")
|
|
|
|
|
520 |
else:
|
521 |
+
raise gr.Error(f"Model Error: Failed to load checkpoint. Check logs. Error: {e}")
|
|
|
|
|
522 |
|
523 |
except gr.Error:
|
524 |
+
raise # Propagate Gradio errors directly
|
525 |
except Exception as e:
|
526 |
logging.error(f"Unexpected error during loading: {e}", exc_info=True)
|
527 |
+
raise gr.Error(f"Initialization Error: Unexpected error. Check logs. Error: {e}")
|
|
|
|
|
528 |
|
529 |
|
530 |
+
# --- Inference Function for Gradio ---
|
531 |
+
# @spaces.GPU # Uncomment if using GPU and have appropriate hardware tier
|
532 |
+
def predict_iupac(smiles_string, decoding_strategy, num_beams, num_return_sequences):
|
533 |
"""
|
534 |
+
Performs SMILES to IUPAC translation using the loaded model and selected strategy.
|
535 |
"""
|
|
|
|
|
|
|
|
|
|
|
536 |
global model, smiles_tokenizer, iupac_tokenizer, device, config
|
537 |
|
538 |
+
# --- Input Validation ---
|
539 |
if not all([model, smiles_tokenizer, iupac_tokenizer, device, config]):
|
540 |
error_msg = "Error: Model or tokenizers not loaded properly. App initialization might have failed. Check Space logs."
|
541 |
logging.error(error_msg)
|
542 |
+
return f"Initialization Error: {error_msg}"
|
543 |
|
544 |
if not smiles_string or not smiles_string.strip():
|
545 |
+
return "Error: Please enter a valid SMILES string."
|
|
|
546 |
|
547 |
smiles_input = smiles_string.strip()
|
548 |
|
549 |
+
# Validate SMILES using RDKit
|
550 |
+
try:
|
551 |
+
mol = MolFromSmiles(smiles_input)
|
552 |
+
if mol is None:
|
553 |
+
return f"Error: Invalid SMILES string provided: '{smiles_input}'"
|
554 |
+
smiles_input = CanonSmiles(smiles_input) # Use canonical form
|
555 |
+
logging.info(f"Canonical SMILES: {smiles_input}")
|
556 |
+
except Exception as e:
|
557 |
+
logging.error(f"Error during SMILES validation/canonicalization: {e}", exc_info=True)
|
558 |
+
return f"Error: Could not process SMILES string '{smiles_input}'. RDKit error: {e}"
|
559 |
+
|
560 |
+
# Validate beam search parameters
|
561 |
+
if decoding_strategy == "Beam Search":
|
562 |
+
if not isinstance(num_beams, int) or num_beams <= 0:
|
563 |
+
return "Error: Beam width must be a positive integer."
|
564 |
+
if not isinstance(num_return_sequences, int) or num_return_sequences <= 0:
|
565 |
+
return "Error: Number of return sequences must be a positive integer."
|
566 |
+
if num_return_sequences > num_beams:
|
567 |
+
return f"Error: Number of return sequences ({num_return_sequences}) cannot exceed beam width ({num_beams})."
|
568 |
+
else:
|
569 |
+
# Ensure defaults are used for greedy
|
570 |
+
num_beams = 1
|
571 |
+
num_return_sequences = 1
|
572 |
+
|
573 |
+
|
574 |
try:
|
575 |
+
# --- Call the core translation logic ---
|
576 |
sos_idx = config["bos_token_id"]
|
577 |
eos_idx = config["eos_token_id"]
|
578 |
pad_idx = config["pad_token_id"]
|
579 |
gen_max_len = config["max_len"]
|
580 |
+
# Use fixed length penalty for now, could be another slider
|
581 |
+
length_penalty = 0.6
|
582 |
|
583 |
+
predicted_results = translate( # Returns list of (name, score)
|
584 |
model=model,
|
585 |
src_sentence=smiles_input,
|
586 |
smiles_tokenizer=smiles_tokenizer,
|
|
|
590 |
sos_idx=sos_idx,
|
591 |
eos_idx=eos_idx,
|
592 |
pad_idx=pad_idx,
|
593 |
+
decoding_strategy=decoding_strategy,
|
594 |
+
beam_width=num_beams,
|
595 |
+
num_return_sequences=num_return_sequences,
|
596 |
+
length_penalty_alpha=length_penalty,
|
597 |
)
|
598 |
+
logging.info(f"Prediction returned {len(predicted_results)} result(s). Strategy: {decoding_strategy}, Beams: {num_beams}, Return: {num_return_sequences}")
|
599 |
|
600 |
# --- Format Output ---
|
601 |
+
output_lines = []
|
602 |
+
output_lines.append(f"Input SMILES: {smiles_input}")
|
603 |
+
output_lines.append(f"Decoding Strategy: {decoding_strategy}")
|
604 |
+
if decoding_strategy == "Beam Search":
|
605 |
+
output_lines.append(f"Beam Width: {num_beams}")
|
606 |
+
output_lines.append(f"Returned Sequences: {len(predicted_results)}")
|
607 |
+
output_lines.append(f"Length Penalty Alpha: {length_penalty:.2f}")
|
608 |
+
|
609 |
+
|
610 |
+
output_lines.append("\n--- Predictions ---")
|
611 |
+
|
612 |
+
if not predicted_results:
|
613 |
+
output_lines.append("No predictions generated.")
|
614 |
else:
|
615 |
+
for i, (name, score) in enumerate(predicted_results):
|
616 |
+
if "[Error]" in name or not name:
|
617 |
+
output_lines.append(f"{i+1}. Prediction Failed: {name}")
|
618 |
+
else:
|
619 |
+
score_info = f"(Score: {score:.4f})" if decoding_strategy == "Beam Search" else ""
|
620 |
+
output_lines.append(f"{i+1}. {name} {score_info}")
|
621 |
+
|
622 |
+
return "\n".join(output_lines)
|
623 |
|
624 |
except RuntimeError as e:
|
625 |
logging.error(f"Runtime error during translation: {e}", exc_info=True)
|
626 |
+
gc.collect()
|
627 |
+
if device.type == 'cuda': torch.cuda.empty_cache()
|
628 |
+
return f"Runtime Error during translation: {e}. Check logs."
|
629 |
except Exception as e:
|
630 |
logging.error(f"Unexpected error during translation: {e}", exc_info=True)
|
631 |
+
return f"Unexpected Error during translation: {e}. Check logs."
|
|
|
632 |
|
633 |
|
634 |
# --- Load Model on App Start ---
|
635 |
try:
|
636 |
load_model_and_tokenizers()
|
637 |
except gr.Error as ge:
|
638 |
+
# Log the Gradio error but allow interface to load potentially showing the error message
|
639 |
+
logging.error(f"Gradio Initialization Error during load: {ge}")
|
640 |
+
# Display error in the UI if possible? Hard to do before UI is built.
|
641 |
+
# We rely on the predict function checking for loaded components.
|
642 |
except Exception as e:
|
643 |
logging.error(f"Critical error during initial model loading: {e}", exc_info=True)
|
644 |
+
# This might prevent the app from starting correctly.
|
645 |
|
646 |
|
647 |
+
# --- Create Gradio Interface ---
|
648 |
+
title = "SMILES to IUPAC Name Translator"
|
649 |
description = f"""
|
650 |
+
Translate a SMILES string into its IUPAC chemical name using a Transformer model ({MODEL_REPO_ID}).
|
651 |
+
Choose between **Greedy Decoding** (fastest, picks the most likely next word) and **Beam Search Decoding** (explores multiple possibilities, potentially better results, slower).
|
652 |
+
**Note:** Model loaded on **{str(device).upper() if device else 'N/A'}**. Beam search can be slow, especially with larger beam widths.
|
653 |
+
Check `config.json` in the repo for model details. SMILES input will be canonicalized using RDKit.
|
654 |
"""
|
655 |
|
656 |
+
# Use gr.Blocks for more layout control
|
657 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="cyan")) as iface:
|
|
|
658 |
gr.Markdown(f"# {title}")
|
659 |
gr.Markdown(description)
|
660 |
|
661 |
with gr.Row():
|
662 |
+
with gr.Column(scale=1): # Input column
|
663 |
smiles_input = gr.Textbox(
|
664 |
label="SMILES String",
|
665 |
+
placeholder="Enter SMILES string (e.g., CCO, c1ccccc1)",
|
666 |
+
lines=2,
|
667 |
+
)
|
668 |
+
with gr.Accordion("Decoding Options", open=False): # Options collapsible
|
669 |
+
decode_strategy = gr.Radio(
|
670 |
+
["Greedy", "Beam Search"],
|
671 |
+
label="Decoding Strategy",
|
672 |
+
value="Greedy",
|
673 |
+
info="Greedy is faster, Beam Search may be more accurate."
|
674 |
+
)
|
675 |
+
beam_width_slider = gr.Slider(
|
676 |
+
minimum=1,
|
677 |
+
maximum=20, # Keep max reasonable for performance
|
678 |
+
step=1,
|
679 |
+
value=5,
|
680 |
+
label="Beam Width",
|
681 |
+
info="Number of beams to explore (Beam Search only)",
|
682 |
+
visible=False # Initially hidden
|
683 |
+
)
|
684 |
+
num_seq_slider = gr.Slider(
|
685 |
+
minimum=1,
|
686 |
+
maximum=5, # Keep max reasonable
|
687 |
+
step=1,
|
688 |
+
value=1,
|
689 |
+
label="Number of Results",
|
690 |
+
info="How many sequences to return (Beam Search only)",
|
691 |
+
visible=False # Initially hidden
|
692 |
+
)
|
693 |
+
|
694 |
+
submit_btn = gr.Button("Translate", variant="primary")
|
695 |
+
|
696 |
+
# --- Logic to show/hide beam search options ---
|
697 |
+
def update_beam_options(strategy):
|
698 |
+
is_beam = strategy == "Beam Search"
|
699 |
+
return {
|
700 |
+
beam_width_slider: gr.update(visible=is_beam),
|
701 |
+
num_seq_slider: gr.update(visible=is_beam)
|
702 |
+
}
|
703 |
+
|
704 |
+
decode_strategy.change(
|
705 |
+
fn=update_beam_options,
|
706 |
+
inputs=decode_strategy,
|
707 |
+
outputs=[beam_width_slider, num_seq_slider]
|
708 |
)
|
|
|
709 |
|
710 |
+
|
711 |
+
with gr.Column(scale=2): # Output column
|
712 |
output_text = gr.Textbox(
|
713 |
+
label="Translation Results",
|
714 |
+
lines=10, # More lines for potentially multiple results
|
715 |
show_copy_button=True,
|
716 |
# interactive=False # Output shouldn't be user-editable
|
717 |
)
|
718 |
|
719 |
+
# --- Define Event Listeners ---
|
|
|
720 |
submit_btn.click(
|
721 |
fn=predict_iupac,
|
722 |
+
inputs=[smiles_input, decode_strategy, beam_width_slider, num_seq_slider],
|
723 |
outputs=output_text,
|
724 |
+
api_name="translate_smiles"
|
725 |
)
|
726 |
|
727 |
+
# Trigger on Enter press in the SMILES box
|
|
|
|
|
|
|
|
|
728 |
smiles_input.submit(
|
729 |
fn=predict_iupac,
|
730 |
+
inputs=[smiles_input, decode_strategy, beam_width_slider, num_seq_slider],
|
731 |
outputs=output_text
|
732 |
)
|
733 |
|
734 |
+
# Add examples
|
735 |
+
gr.Examples(
|
736 |
+
examples=[
|
737 |
+
["CCO", "Greedy", 1, 1],
|
738 |
+
["c1ccccc1", "Greedy", 1, 1],
|
739 |
+
["CC(C)Br", "Beam Search", 5, 3],
|
740 |
+
["C[C@H](O)c1ccccc1", "Beam Search", 10, 5],
|
741 |
+
["INVALID_SMILES", "Greedy", 1, 1], # Example of invalid input
|
742 |
+
["N#CC(C)(C)OC(=O)C(C)=C", "Beam Search", 8, 2]
|
743 |
+
],
|
744 |
+
inputs=[smiles_input, decode_strategy, beam_width_slider, num_seq_slider], # Match inputs order
|
745 |
+
outputs=output_text, # Output component
|
746 |
+
fn=predict_iupac, # Function to run for examples
|
747 |
+
cache_examples=False, # Caching might be tricky with model state
|
748 |
+
label="Example SMILES & Settings"
|
749 |
+
)
|
750 |
+
|
751 |
+
|
752 |
# --- Launch the App ---
|
|
|
753 |
if __name__ == "__main__":
|
|
|
|
|
754 |
iface.launch()
|