AdnanElAssadi's picture
Update app.py
5cee7bc verified
raw
history blame
26.1 kB
import gradio as gr
import json
import os
from pathlib import Path
def create_reranking_interface(task_data):
"""Create a Gradio interface for reranking evaluation."""
samples = task_data["samples"]
results = {"task_name": task_data["task_name"], "task_type": "reranking", "annotations": []}
completed_samples = {s["id"]: False for s in samples}
# Try to load existing results
output_path = f"{task_data['task_name']}_human_results.json"
if os.path.exists(output_path):
try:
with open(output_path, "r") as f:
existing_results = json.load(f)
results = existing_results
# Update completed samples based on existing annotations
for anno in results.get("annotations", []):
if "sample_id" in anno:
completed_samples[anno["sample_id"]] = True
except Exception as e:
print(f"Error loading existing results: {str(e)}")
# Create the main interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(f"# {task_data['task_name']} - Human Reranking Evaluation")
with gr.Accordion("Instructions", open=True):
gr.Markdown("""
## Task Instructions
{instructions}
### How to use this interface:
1. Read the query at the top
2. For each document, select its rank (1 = most relevant)
3. Make sure each document has a unique rank (1 to N)
4. Click "Submit Rankings" when you're done with the current query
5. Use "Previous" and "Next" to navigate between queries
6. Click "Save All Results" periodically to ensure your work is saved
""".format(instructions=task_data["instructions"]))
# State variables
current_sample_id = gr.State(value=samples[0]["id"])
# Progress tracking
with gr.Row():
progress_text = gr.Textbox(label="Progress", value=f"Progress: {sum(completed_samples.values())}/{len(samples)}", interactive=False)
status_box = gr.Textbox(label="Status", value="Ready to start evaluation", interactive=False)
# Query display
with gr.Group():
gr.Markdown("## Query:")
query_text = gr.Textbox(value=samples[0]["query"], label="", interactive=False, lines=3)
# Validation
with gr.Row():
validate_btn = gr.Button("Validate Rankings", variant="secondary")
validation_text = gr.Textbox(label="Validation", interactive=False)
# Document ranking section
gr.Markdown("## Documents to Rank:")
# Container for document elements
doc_containers = []
rank_inputs = []
doc_texts = []
# Create a container for up to 10 documents
max_docs = 10
for i in range(max_docs):
with gr.Group(visible=(i < len(samples[0]["candidates"]))) as doc_container:
doc_containers.append(doc_container)
with gr.Row():
# Rank selection
with gr.Column(scale=1, min_width=100):
rank_input = gr.Number(
value=i+1,
label=f"Rank",
minimum=1,
maximum=len(samples[0]["candidates"]),
step=1,
interactive=True
)
rank_inputs.append(rank_input)
# Document text
with gr.Column(scale=4):
doc_text = gr.Textbox(
value=samples[0]["candidates"][i] if i < len(samples[0]["candidates"]) else "",
label=f"Document {i+1}",
lines=4,
interactive=False
)
doc_texts.append(doc_text)
gr.Markdown("---")
# Navigation and submission buttons
with gr.Row():
prev_btn = gr.Button("โ† Previous Query", size="sm")
submit_btn = gr.Button("Submit Rankings", size="lg", variant="primary")
next_btn = gr.Button("Next โ†’", size="sm")
save_btn = gr.Button("๐Ÿ’พ Save All Results", variant="secondary")
# Function to validate rankings
def validate_rankings(*ranks):
try:
# Filter out None values
valid_ranks = [int(r) for r in ranks if r is not None]
# Check for duplicates
if len(set(valid_ranks)) != len(valid_ranks):
# Find duplicate ranks
dupes = {}
for r in valid_ranks:
dupes[r] = dupes.get(r, 0) + 1
duplicates = [r for r, count in dupes.items() if count > 1]
return f"โš ๏ธ Duplicate ranks found: {', '.join(str(d) for d in sorted(duplicates))}. Each document must have a unique rank."
# Check for complete ranking
max_rank = max(valid_ranks) if valid_ranks else 0
expected_ranks = set(range(1, max_rank + 1))
if set(valid_ranks) != expected_ranks:
missing = sorted(expected_ranks - set(valid_ranks))
if missing:
return f"โš ๏ธ Missing ranks: {', '.join(str(m) for m in missing)}. Ranks must be consecutive integers from 1 to {max_rank}."
return "โœ“ Rankings are valid! Ready to submit."
except Exception as e:
return f"Error validating rankings: {str(e)}"
# Function to load a sample
def load_sample(sample_id):
try:
sample = next((s for s in samples if s["id"] == sample_id), None)
if not sample:
return [gr.update()] * (3 + 2*max_docs)
candidates = sample["candidates"]
num_docs = len(candidates)
# Get existing ranking if available
existing_ranking = next((anno["rankings"] for anno in results["annotations"] if anno["sample_id"] == sample_id), None)
# Set default ranks (from existing or sequential)
ranks = []
for i in range(num_docs):
if existing_ranking and i < len(existing_ranking):
ranks.append(existing_ranking[i])
else:
ranks.append(i + 1)
# Set container visibility
container_visibility = [i < num_docs for i in range(max_docs)]
# Update maximum values for number inputs
for input_field in rank_inputs:
input_field.maximum = num_docs
# Fill in document contents
docs = [candidates[i] if i < num_docs else "" for i in range(max_docs)]
# Update visuals based on completed status
status = "Already ranked" if completed_samples.get(sample_id, False) else "Ready to rank"
progress = f"Progress: {sum(completed_samples.values())}/{len(samples)}"
# Prepare all outputs
outputs = [sample["query"], progress, status]
outputs.extend(ranks) # Rank values
outputs.extend(docs) # Document texts
outputs.extend(container_visibility) # Container visibilities
return outputs
except Exception as e:
import traceback
print(traceback.format_exc())
return [gr.update(value=f"Error loading sample: {str(e)}")] + [gr.update()] * (2 + 2*max_docs)
# Function to save rankings
def save_rankings(sample_id, *ranks):
try:
# Get the sample
sample = next((s for s in samples if s["id"] == sample_id), None)
if not sample:
return "โš ๏ธ Sample not found", progress_text.value
num_candidates = len(sample["candidates"])
# Get the rankings for just this sample
valid_ranks = [int(r) for r in ranks[:num_candidates] if r is not None]
# Validate rankings
if len(valid_ranks) != num_candidates:
return f"โš ๏ธ Not all documents have ranks. Expected {num_candidates}, got {len(valid_ranks)}.", progress_text.value
if sorted(valid_ranks) != list(range(1, num_candidates + 1)):
return "โš ๏ธ Rankings must include all integers from 1 to " + str(num_candidates), progress_text.value
# Create annotation
annotation = {"sample_id": sample_id, "rankings": valid_ranks}
# Update or add the annotation
existing_idx = next((i for i, a in enumerate(results["annotations"]) if a["sample_id"] == sample_id), None)
if existing_idx is not None:
results["annotations"][existing_idx] = annotation
else:
results["annotations"].append(annotation)
# Mark sample as completed
completed_samples[sample_id] = True
# Save to file
with open(output_path, "w") as f:
json.dump(results, f, indent=2)
# Update progress
progress = f"Progress: {sum(completed_samples.values())}/{len(samples)}"
return f"โœ… Rankings saved successfully! ({sum(completed_samples.values())}/{len(samples)} completed)", progress
except Exception as e:
import traceback
print(traceback.format_exc())
return f"Error saving rankings: {str(e)}", progress_text.value
# Function to navigate to next sample
def next_sample_id(current_id):
current_idx = next((i for i, s in enumerate(samples) if s["id"] == current_id), -1)
if current_idx == -1:
return current_id
next_idx = min(current_idx + 1, len(samples) - 1)
return samples[next_idx]["id"]
# Function to navigate to previous sample
def prev_sample_id(current_id):
current_idx = next((i for i, s in enumerate(samples) if s["id"] == current_id), -1)
if current_idx == -1:
return current_id
prev_idx = max(current_idx - 1, 0)
return samples[prev_idx]["id"]
# Function to save all results
def save_results():
try:
with open(output_path, "w") as f:
json.dump(results, f, indent=2)
return f"โœ… Results saved to {output_path} ({len(results['annotations'])} annotations)"
except Exception as e:
return f"โš ๏ธ Error saving results file: {str(e)}"
# Connect validation button
validate_btn.click(
validate_rankings,
inputs=rank_inputs,
outputs=validation_text
)
# Connect submission button
submit_btn.click(
save_rankings,
inputs=[current_sample_id] + rank_inputs,
outputs=[status_box, progress_text]
)
# Connect navigation buttons
next_btn.click(
next_sample_id,
inputs=[current_sample_id],
outputs=[current_sample_id]
).then(
load_sample,
inputs=[current_sample_id],
outputs=[query_text, progress_text, status_box] +
rank_inputs +
doc_texts +
doc_containers
)
prev_btn.click(
prev_sample_id,
inputs=[current_sample_id],
outputs=[current_sample_id]
).then(
load_sample,
inputs=[current_sample_id],
outputs=[query_text, progress_text, status_box] +
rank_inputs +
doc_texts +
doc_containers
)
# Connect save button
save_btn.click(save_results, outputs=[status_box])
# Initialize interface with first sample
demo.load(
lambda: load_sample(samples[0]['id']),
outputs=[query_text, progress_text, status_box] +
rank_inputs +
doc_texts +
doc_containers
)
# Add CSS styling
demo.load(lambda: gr.Accordion.update(open=True), outputs=[])
return demo
# Main app with file upload capability
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# MTEB Human Evaluation Demo")
with gr.Tabs():
with gr.TabItem("Demo"):
gr.Markdown("""
## MTEB Human Evaluation Interface
This interface allows you to evaluate the relevance of documents for reranking tasks.
""")
# Function to get the most recent task file
def get_latest_task_file():
# Check first in uploaded_tasks directory
os.makedirs("uploaded_tasks", exist_ok=True)
uploaded_tasks = [f for f in os.listdir("uploaded_tasks") if f.endswith(".json")]
if uploaded_tasks:
# Sort by modification time, newest first
uploaded_tasks.sort(key=lambda x: os.path.getmtime(os.path.join("uploaded_tasks", x)), reverse=True)
return os.path.join("uploaded_tasks", uploaded_tasks[0])
# Fall back to default example
return "AskUbuntuDupQuestions_human_eval.json"
# Load the task file
task_file = get_latest_task_file()
try:
with open(task_file, "r") as f:
task_data = json.load(f)
# Show which task is currently loaded
gr.Markdown(f"**Current Task: {task_data['task_name']}** ({len(task_data['samples'])} samples)")
# Display the interface
reranking_demo = create_reranking_interface(task_data)
except Exception as e:
gr.Markdown(f"**Error loading task: {str(e)}**")
gr.Markdown("Please upload a valid task file in the 'Upload & Evaluate' tab.")
with gr.TabItem("Upload & Evaluate"):
gr.Markdown("""
## Upload Your Own Task File
If you have a prepared task file, you can upload it here to create an evaluation interface.
""")
with gr.Row():
with gr.Column():
file_input = gr.File(label="Upload a task file (JSON)")
load_btn = gr.Button("Load Task")
message = gr.Textbox(label="Status", interactive=False)
# Add task list for previously uploaded tasks
gr.Markdown("### Previous Uploads")
# Function to list existing task files in the tasks directory
def list_task_files():
os.makedirs("uploaded_tasks", exist_ok=True)
tasks = [f for f in os.listdir("uploaded_tasks") if f.endswith(".json")]
if not tasks:
return "No task files uploaded yet."
return "\n".join([f"- [{t}](javascript:selectTask('{t}'))" for t in tasks])
task_list = gr.Markdown(list_task_files())
refresh_btn = gr.Button("Refresh List")
# Add results management section
gr.Markdown("### Results Management")
# Function to list existing result files
def list_result_files():
results = [f for f in os.listdir(".") if f.endswith("_human_results.json")]
if not results:
return "No result files available yet."
result_links = []
for r in results:
# Calculate completion stats
try:
with open(r, "r") as f:
result_data = json.load(f)
annotation_count = len(result_data.get("annotations", []))
task_name = result_data.get("task_name", "Unknown")
result_links.append(f"- {r} ({annotation_count} annotations for {task_name})")
except:
result_links.append(f"- {r}")
return "\n".join(result_links)
results_list = gr.Markdown(list_result_files())
download_results_btn = gr.Button("Download Results")
# Right side - will contain the actual interface
with gr.Column():
task_container = gr.HTML()
# Handle file upload and storage
def handle_upload(file):
if not file:
return "Please upload a task file", task_list.value, task_container.value
try:
# Create directory if it doesn't exist
os.makedirs("uploaded_tasks", exist_ok=True)
# Read the uploaded file
with open(file.name, "r") as f:
task_data = json.load(f)
# Validate task format
if "task_name" not in task_data or "samples" not in task_data:
return "Invalid task file format. Must contain 'task_name' and 'samples' fields.", task_list.value, task_container.value
# Save to a consistent location
task_filename = f"uploaded_tasks/{task_data['task_name']}_task.json"
with open(task_filename, "w") as f:
json.dump(task_data, f, indent=2)
# Instead of trying to create the interface here,
# we'll return a message with instructions
return f"Task '{task_data['task_name']}' uploaded successfully with {len(task_data['samples'])} samples. Please refresh the app and use the Demo tab to evaluate it.", list_task_files(), f"""
<div style="padding: 20px; background-color: #f0f0f0; border-radius: 10px;">
<h3>Task uploaded successfully!</h3>
<p>Task Name: {task_data['task_name']}</p>
<p>Samples: {len(task_data['samples'])}</p>
<p>To evaluate this task:</p>
<ol>
<li>Refresh the app</li>
<li>The Demo tab will now use your uploaded task</li>
<li>Complete your evaluations</li>
<li>Results will be saved as {task_data['task_name']}_human_results.json</li>
</ol>
</div>
"""
except Exception as e:
return f"Error processing task file: {str(e)}", task_list.value, task_container.value
# Function to prepare results for download
def prepare_results_for_download():
results = [f for f in os.listdir(".") if f.endswith("_human_results.json")]
if not results:
return None
# Create a zip file with all results
import zipfile
zip_path = "mteb_human_eval_results.zip"
with zipfile.ZipFile(zip_path, 'w') as zipf:
for r in results:
zipf.write(r)
return zip_path
# Connect events
load_btn.click(handle_upload, inputs=[file_input], outputs=[message, task_list, task_container])
refresh_btn.click(list_task_files, outputs=[task_list])
download_results_btn.click(prepare_results_for_download, outputs=[gr.File(label="Download Results")])
with gr.TabItem("Results Management"):
gr.Markdown("""
## Manage Evaluation Results
View, download, and analyze your evaluation results.
""")
# Function to load and display result stats
def get_result_stats():
results = [f for f in os.listdir(".") if f.endswith("_human_results.json")]
if not results:
return "No result files available yet."
stats = []
for r in results:
try:
with open(r, "r") as f:
result_data = json.load(f)
task_name = result_data.get("task_name", "Unknown")
annotations = result_data.get("annotations", [])
annotation_count = len(annotations)
# Calculate completion percentage
sample_ids = set(a.get("sample_id") for a in annotations)
# Try to get the total sample count from the corresponding task file
total_samples = 0
task_file = f"uploaded_tasks/{task_name}_task.json"
if os.path.exists(task_file):
with open(task_file, "r") as f:
task_data = json.load(f)
total_samples = len(task_data.get("samples", []))
completion = f"{len(sample_ids)}/{total_samples}" if total_samples else f"{len(sample_ids)} samples"
stats.append(f"### {task_name}\n- Annotations: {annotation_count}\n- Completion: {completion}\n- File: {r}")
except Exception as e:
stats.append(f"### {r}\n- Error loading results: {str(e)}")
return "\n\n".join(stats)
result_stats = gr.Markdown(get_result_stats())
refresh_results_btn = gr.Button("Refresh Results")
# Add download options
with gr.Row():
with gr.Column():
download_all_btn = gr.Button("Download All Results (ZIP)")
with gr.Column():
result_select = gr.Dropdown(choices=[f for f in os.listdir(".") if f.endswith("_human_results.json")], label="Select Result to Download", value=None)
download_selected_btn = gr.Button("Download Selected")
# Add results visualization placeholder
gr.Markdown("### Results Visualization")
gr.Markdown("*Visualization features will be added in a future update.*")
# Connect events
refresh_results_btn.click(get_result_stats, outputs=[result_stats])
# Function to prepare all results for download as ZIP
def prepare_all_results():
import zipfile
zip_path = "mteb_human_eval_results.zip"
with zipfile.ZipFile(zip_path, 'w') as zipf:
for r in [f for f in os.listdir(".") if f.endswith("_human_results.json")]:
zipf.write(r)
return zip_path
# Function to return a single result file
def get_selected_result(filename):
if not filename:
return None
if os.path.exists(filename):
return filename
return None
# Update dropdown when refreshing results
def update_result_dropdown():
return gr.Dropdown.update(choices=[f for f in os.listdir(".") if f.endswith("_human_results.json")])
refresh_results_btn.click(update_result_dropdown, outputs=[result_select])
download_all_btn.click(prepare_all_results, outputs=[gr.File(label="Download All Results")])
download_selected_btn.click(get_selected_result, inputs=[result_select], outputs=[gr.File(label="Download Selected Result")])
if __name__ == "__main__":
demo.launch()