File size: 26,090 Bytes
06f87ee
 
 
 
 
 
5cee7bc
76c554c
 
 
 
5cee7bc
 
 
76c554c
5cee7bc
 
 
 
 
 
 
76c554c
5cee7bc
76c554c
5cee7bc
76c554c
 
 
 
 
 
 
 
 
 
5cee7bc
 
76c554c
 
 
 
06f87ee
5cee7bc
76c554c
06f87ee
5cee7bc
76c554c
5cee7bc
76c554c
9f8b4b9
5cee7bc
76c554c
 
5cee7bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76c554c
5cee7bc
 
 
76c554c
c24aa0c
5cee7bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76c554c
5cee7bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76c554c
5cee7bc
 
76c554c
 
 
5cee7bc
76c554c
5cee7bc
 
 
76c554c
 
 
5cee7bc
 
 
 
76c554c
 
 
5cee7bc
 
 
76c554c
 
 
5cee7bc
 
 
 
76c554c
 
5cee7bc
76c554c
 
5cee7bc
 
 
 
 
 
 
 
 
 
 
76c554c
 
06f87ee
76c554c
9f8b4b9
06f87ee
 
9f8b4b9
 
 
 
 
 
 
 
76c554c
9f8b4b9
76c554c
 
 
 
 
 
 
 
 
 
 
9f8b4b9
76c554c
9f8b4b9
 
 
76c554c
 
 
 
 
 
 
 
9f8b4b9
 
 
9069a07
9f8b4b9
 
 
 
 
 
 
 
42ed941
9f8b4b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42ed941
9f8b4b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1f1819
9f8b4b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1f1819
9f8b4b9
 
a3a2c22
 
 
 
 
9f8b4b9
5716188
9f8b4b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f93396e
9f8b4b9
 
 
 
 
 
 
 
76c554c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
import gradio as gr
import json
import os
from pathlib import Path

def create_reranking_interface(task_data):
    """Create a Gradio interface for reranking evaluation."""
    samples = task_data["samples"]
    results = {"task_name": task_data["task_name"], "task_type": "reranking", "annotations": []}
    completed_samples = {s["id"]: False for s in samples}
    
    # Try to load existing results
    output_path = f"{task_data['task_name']}_human_results.json"
    if os.path.exists(output_path):
        try:
            with open(output_path, "r") as f:
                existing_results = json.load(f)
                results = existing_results
                # Update completed samples based on existing annotations
                for anno in results.get("annotations", []):
                    if "sample_id" in anno:
                        completed_samples[anno["sample_id"]] = True
        except Exception as e:
            print(f"Error loading existing results: {str(e)}")
    
    # Create the main interface
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown(f"# {task_data['task_name']} - Human Reranking Evaluation")
        with gr.Accordion("Instructions", open=True):
            gr.Markdown("""
            ## Task Instructions
            
            {instructions}
            
            ### How to use this interface:
            1. Read the query at the top
            2. For each document, select its rank (1 = most relevant)
            3. Make sure each document has a unique rank (1 to N)
            4. Click "Submit Rankings" when you're done with the current query
            5. Use "Previous" and "Next" to navigate between queries
            6. Click "Save All Results" periodically to ensure your work is saved
            """.format(instructions=task_data["instructions"]))
        
        # State variables
        current_sample_id = gr.State(value=samples[0]["id"])
        
        # Progress tracking
        with gr.Row():
            progress_text = gr.Textbox(label="Progress", value=f"Progress: {sum(completed_samples.values())}/{len(samples)}", interactive=False)
            status_box = gr.Textbox(label="Status", value="Ready to start evaluation", interactive=False)
        
        # Query display
        with gr.Group():
            gr.Markdown("## Query:")
            query_text = gr.Textbox(value=samples[0]["query"], label="", interactive=False, lines=3)
            
            # Validation
            with gr.Row():
                validate_btn = gr.Button("Validate Rankings", variant="secondary")
                validation_text = gr.Textbox(label="Validation", interactive=False)
            
            # Document ranking section
            gr.Markdown("## Documents to Rank:")
            
            # Container for document elements
            doc_containers = []
            rank_inputs = []
            doc_texts = []
            
            # Create a container for up to 10 documents
            max_docs = 10
            for i in range(max_docs):
                with gr.Group(visible=(i < len(samples[0]["candidates"]))) as doc_container:
                    doc_containers.append(doc_container)
                    
                    with gr.Row():
                        # Rank selection
                        with gr.Column(scale=1, min_width=100):
                            rank_input = gr.Number(
                                value=i+1, 
                                label=f"Rank", 
                                minimum=1,
                                maximum=len(samples[0]["candidates"]),
                                step=1,
                                interactive=True
                            )
                            rank_inputs.append(rank_input)
                        
                        # Document text
                        with gr.Column(scale=4):
                            doc_text = gr.Textbox(
                                value=samples[0]["candidates"][i] if i < len(samples[0]["candidates"]) else "",
                                label=f"Document {i+1}",
                                lines=4,
                                interactive=False
                            )
                            doc_texts.append(doc_text)
                    
                    gr.Markdown("---")
            
            # Navigation and submission buttons
            with gr.Row():
                prev_btn = gr.Button("← Previous Query", size="sm")
                submit_btn = gr.Button("Submit Rankings", size="lg", variant="primary")
                next_btn = gr.Button("Next →", size="sm")
            save_btn = gr.Button("💾 Save All Results", variant="secondary")
        
        # Function to validate rankings
        def validate_rankings(*ranks):
            try:
                # Filter out None values
                valid_ranks = [int(r) for r in ranks if r is not None]
                
                # Check for duplicates
                if len(set(valid_ranks)) != len(valid_ranks):
                    # Find duplicate ranks
                    dupes = {}
                    for r in valid_ranks:
                        dupes[r] = dupes.get(r, 0) + 1
                    duplicates = [r for r, count in dupes.items() if count > 1]
                    return f"⚠️ Duplicate ranks found: {', '.join(str(d) for d in sorted(duplicates))}. Each document must have a unique rank."
                
                # Check for complete ranking
                max_rank = max(valid_ranks) if valid_ranks else 0
                expected_ranks = set(range(1, max_rank + 1))
                if set(valid_ranks) != expected_ranks:
                    missing = sorted(expected_ranks - set(valid_ranks))
                    if missing:
                        return f"⚠️ Missing ranks: {', '.join(str(m) for m in missing)}. Ranks must be consecutive integers from 1 to {max_rank}."
                
                return "✓ Rankings are valid! Ready to submit."
            except Exception as e:
                return f"Error validating rankings: {str(e)}"
        
        # Function to load a sample
        def load_sample(sample_id):
            try:
                sample = next((s for s in samples if s["id"] == sample_id), None)
                if not sample:
                    return [gr.update()] * (3 + 2*max_docs)
                
                candidates = sample["candidates"]
                num_docs = len(candidates)
                
                # Get existing ranking if available
                existing_ranking = next((anno["rankings"] for anno in results["annotations"] if anno["sample_id"] == sample_id), None)
                
                # Set default ranks (from existing or sequential)
                ranks = []
                for i in range(num_docs):
                    if existing_ranking and i < len(existing_ranking):
                        ranks.append(existing_ranking[i])
                    else:
                        ranks.append(i + 1)
                
                # Set container visibility
                container_visibility = [i < num_docs for i in range(max_docs)]
                
                # Update maximum values for number inputs
                for input_field in rank_inputs:
                    input_field.maximum = num_docs
                
                # Fill in document contents
                docs = [candidates[i] if i < num_docs else "" for i in range(max_docs)]
                
                # Update visuals based on completed status
                status = "Already ranked" if completed_samples.get(sample_id, False) else "Ready to rank"
                progress = f"Progress: {sum(completed_samples.values())}/{len(samples)}"
                
                # Prepare all outputs
                outputs = [sample["query"], progress, status]
                outputs.extend(ranks)  # Rank values
                outputs.extend(docs)   # Document texts
                outputs.extend(container_visibility)  # Container visibilities
                
                return outputs
            except Exception as e:
                import traceback
                print(traceback.format_exc())
                return [gr.update(value=f"Error loading sample: {str(e)}")] + [gr.update()] * (2 + 2*max_docs)
        
        # Function to save rankings
        def save_rankings(sample_id, *ranks):
            try:
                # Get the sample
                sample = next((s for s in samples if s["id"] == sample_id), None)
                if not sample:
                    return "⚠️ Sample not found", progress_text.value
                
                num_candidates = len(sample["candidates"])
                
                # Get the rankings for just this sample
                valid_ranks = [int(r) for r in ranks[:num_candidates] if r is not None]
                
                # Validate rankings
                if len(valid_ranks) != num_candidates:
                    return f"⚠️ Not all documents have ranks. Expected {num_candidates}, got {len(valid_ranks)}.", progress_text.value
                
                if sorted(valid_ranks) != list(range(1, num_candidates + 1)):
                    return "⚠️ Rankings must include all integers from 1 to " + str(num_candidates), progress_text.value
                
                # Create annotation
                annotation = {"sample_id": sample_id, "rankings": valid_ranks}
                
                # Update or add the annotation
                existing_idx = next((i for i, a in enumerate(results["annotations"]) if a["sample_id"] == sample_id), None)
                if existing_idx is not None:
                    results["annotations"][existing_idx] = annotation
                else:
                    results["annotations"].append(annotation)
                
                # Mark sample as completed
                completed_samples[sample_id] = True
                
                # Save to file
                with open(output_path, "w") as f:
                    json.dump(results, f, indent=2)
                
                # Update progress
                progress = f"Progress: {sum(completed_samples.values())}/{len(samples)}"
                
                return f"✅ Rankings saved successfully! ({sum(completed_samples.values())}/{len(samples)} completed)", progress
            except Exception as e:
                import traceback
                print(traceback.format_exc())
                return f"Error saving rankings: {str(e)}", progress_text.value
        
        # Function to navigate to next sample
        def next_sample_id(current_id):
            current_idx = next((i for i, s in enumerate(samples) if s["id"] == current_id), -1)
            if current_idx == -1:
                return current_id
            next_idx = min(current_idx + 1, len(samples) - 1)
            return samples[next_idx]["id"]
        
        # Function to navigate to previous sample
        def prev_sample_id(current_id):
            current_idx = next((i for i, s in enumerate(samples) if s["id"] == current_id), -1)
            if current_idx == -1:
                return current_id
            prev_idx = max(current_idx - 1, 0)
            return samples[prev_idx]["id"]
        
        # Function to save all results
        def save_results():
            try:
                with open(output_path, "w") as f:
                    json.dump(results, f, indent=2)
                return f"✅ Results saved to {output_path} ({len(results['annotations'])} annotations)"
            except Exception as e:
                return f"⚠️ Error saving results file: {str(e)}"
        
        # Connect validation button
        validate_btn.click(
            validate_rankings,
            inputs=rank_inputs,
            outputs=validation_text
        )
        
        # Connect submission button
        submit_btn.click(
            save_rankings,
            inputs=[current_sample_id] + rank_inputs,
            outputs=[status_box, progress_text]
        )
        
        # Connect navigation buttons
        next_btn.click(
            next_sample_id, 
            inputs=[current_sample_id], 
            outputs=[current_sample_id]
        ).then(
            load_sample,
            inputs=[current_sample_id],
            outputs=[query_text, progress_text, status_box] + 
                    rank_inputs + 
                    doc_texts +
                    doc_containers
        )
        
        prev_btn.click(
            prev_sample_id, 
            inputs=[current_sample_id], 
            outputs=[current_sample_id]
        ).then(
            load_sample,
            inputs=[current_sample_id],
            outputs=[query_text, progress_text, status_box] + 
                    rank_inputs + 
                    doc_texts +
                    doc_containers
        )
        
        # Connect save button
        save_btn.click(save_results, outputs=[status_box])
        
        # Initialize interface with first sample
        demo.load(
            lambda: load_sample(samples[0]['id']), 
            outputs=[query_text, progress_text, status_box] + 
                    rank_inputs + 
                    doc_texts +
                    doc_containers
        )
        
        # Add CSS styling
        demo.load(lambda: gr.Accordion.update(open=True), outputs=[])
        
    return demo

# Main app with file upload capability
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# MTEB Human Evaluation Demo")
    
    with gr.Tabs():
        with gr.TabItem("Demo"):
            gr.Markdown("""
            ## MTEB Human Evaluation Interface
            
            This interface allows you to evaluate the relevance of documents for reranking tasks.
            """)
            
            # Function to get the most recent task file
            def get_latest_task_file():
                # Check first in uploaded_tasks directory
                os.makedirs("uploaded_tasks", exist_ok=True)
                uploaded_tasks = [f for f in os.listdir("uploaded_tasks") if f.endswith(".json")]
                
                if uploaded_tasks:
                    # Sort by modification time, newest first
                    uploaded_tasks.sort(key=lambda x: os.path.getmtime(os.path.join("uploaded_tasks", x)), reverse=True)
                    return os.path.join("uploaded_tasks", uploaded_tasks[0])
                
                # Fall back to default example
                return "AskUbuntuDupQuestions_human_eval.json"
            
            # Load the task file
            task_file = get_latest_task_file()
            
            try:
                with open(task_file, "r") as f:
                    task_data = json.load(f)
                
                # Show which task is currently loaded
                gr.Markdown(f"**Current Task: {task_data['task_name']}** ({len(task_data['samples'])} samples)")
                
                # Display the interface
                reranking_demo = create_reranking_interface(task_data)
            except Exception as e:
                gr.Markdown(f"**Error loading task: {str(e)}**")
                gr.Markdown("Please upload a valid task file in the 'Upload & Evaluate' tab.")
        
        with gr.TabItem("Upload & Evaluate"):
            gr.Markdown("""
            ## Upload Your Own Task File
            
            If you have a prepared task file, you can upload it here to create an evaluation interface.
            """)
            
            with gr.Row():
                with gr.Column():
                    file_input = gr.File(label="Upload a task file (JSON)")
                    load_btn = gr.Button("Load Task")
                    message = gr.Textbox(label="Status", interactive=False)
                    
                    # Add task list for previously uploaded tasks
                    gr.Markdown("### Previous Uploads")
                    
                    # Function to list existing task files in the tasks directory
                    def list_task_files():
                        os.makedirs("uploaded_tasks", exist_ok=True)
                        tasks = [f for f in os.listdir("uploaded_tasks") if f.endswith(".json")]
                        if not tasks:
                            return "No task files uploaded yet."
                        return "\n".join([f"- [{t}](javascript:selectTask('{t}'))" for t in tasks])
                    
                    task_list = gr.Markdown(list_task_files())
                    refresh_btn = gr.Button("Refresh List")
                    
                    # Add results management section
                    gr.Markdown("### Results Management")
                    
                    # Function to list existing result files
                    def list_result_files():
                        results = [f for f in os.listdir(".") if f.endswith("_human_results.json")]
                        if not results:
                            return "No result files available yet."
                        
                        result_links = []
                        for r in results:
                            # Calculate completion stats
                            try:
                                with open(r, "r") as f:
                                    result_data = json.load(f)
                                annotation_count = len(result_data.get("annotations", []))
                                task_name = result_data.get("task_name", "Unknown")
                                result_links.append(f"- {r} ({annotation_count} annotations for {task_name})")
                            except:
                                result_links.append(f"- {r}")
                        
                        return "\n".join(result_links)
                    
                    results_list = gr.Markdown(list_result_files())
                    download_results_btn = gr.Button("Download Results")
                    
                # Right side - will contain the actual interface
                with gr.Column():
                    task_container = gr.HTML()
            
            # Handle file upload and storage
            def handle_upload(file):
                if not file:
                    return "Please upload a task file", task_list.value, task_container.value
                
                try:
                    # Create directory if it doesn't exist
                    os.makedirs("uploaded_tasks", exist_ok=True)
                    
                    # Read the uploaded file
                    with open(file.name, "r") as f:
                        task_data = json.load(f)
                    
                    # Validate task format
                    if "task_name" not in task_data or "samples" not in task_data:
                        return "Invalid task file format. Must contain 'task_name' and 'samples' fields.", task_list.value, task_container.value
                    
                    # Save to a consistent location
                    task_filename = f"uploaded_tasks/{task_data['task_name']}_task.json"
                    with open(task_filename, "w") as f:
                        json.dump(task_data, f, indent=2)
                    
                    # Instead of trying to create the interface here,
                    # we'll return a message with instructions
                    return f"Task '{task_data['task_name']}' uploaded successfully with {len(task_data['samples'])} samples. Please refresh the app and use the Demo tab to evaluate it.", list_task_files(), f"""
                    <div style="padding: 20px; background-color: #f0f0f0; border-radius: 10px;">
                        <h3>Task uploaded successfully!</h3>
                        <p>Task Name: {task_data['task_name']}</p>
                        <p>Samples: {len(task_data['samples'])}</p>
                        <p>To evaluate this task:</p>
                        <ol>
                            <li>Refresh the app</li>
                            <li>The Demo tab will now use your uploaded task</li>
                            <li>Complete your evaluations</li>
                            <li>Results will be saved as {task_data['task_name']}_human_results.json</li>
                        </ol>
                    </div>
                    """
                except Exception as e:
                    return f"Error processing task file: {str(e)}", task_list.value, task_container.value
            
            # Function to prepare results for download
            def prepare_results_for_download():
                results = [f for f in os.listdir(".") if f.endswith("_human_results.json")]
                if not results:
                    return None
                
                # Create a zip file with all results
                import zipfile
                zip_path = "mteb_human_eval_results.zip"
                with zipfile.ZipFile(zip_path, 'w') as zipf:
                    for r in results:
                        zipf.write(r)
                
                return zip_path
            
            # Connect events
            load_btn.click(handle_upload, inputs=[file_input], outputs=[message, task_list, task_container])
            refresh_btn.click(list_task_files, outputs=[task_list])
            download_results_btn.click(prepare_results_for_download, outputs=[gr.File(label="Download Results")])
        
        with gr.TabItem("Results Management"):
            gr.Markdown("""
            ## Manage Evaluation Results
            
            View, download, and analyze your evaluation results.
            """)
            
            # Function to load and display result stats
            def get_result_stats():
                results = [f for f in os.listdir(".") if f.endswith("_human_results.json")]
                if not results:
                    return "No result files available yet."
                
                stats = []
                for r in results:
                    try:
                        with open(r, "r") as f:
                            result_data = json.load(f)
                        
                        task_name = result_data.get("task_name", "Unknown")
                        annotations = result_data.get("annotations", [])
                        annotation_count = len(annotations)
                        
                        # Calculate completion percentage
                        sample_ids = set(a.get("sample_id") for a in annotations)
                        
                        # Try to get the total sample count from the corresponding task file
                        total_samples = 0
                        task_file = f"uploaded_tasks/{task_name}_task.json"
                        if os.path.exists(task_file):
                            with open(task_file, "r") as f:
                                task_data = json.load(f)
                            total_samples = len(task_data.get("samples", []))
                        
                        completion = f"{len(sample_ids)}/{total_samples}" if total_samples else f"{len(sample_ids)} samples"
                        
                        stats.append(f"### {task_name}\n- Annotations: {annotation_count}\n- Completion: {completion}\n- File: {r}")
                    except Exception as e:
                        stats.append(f"### {r}\n- Error loading results: {str(e)}")
                
                return "\n\n".join(stats)
            
            result_stats = gr.Markdown(get_result_stats())
            refresh_results_btn = gr.Button("Refresh Results")
            
            # Add download options
            with gr.Row():
                with gr.Column():
                    download_all_btn = gr.Button("Download All Results (ZIP)")
                with gr.Column():
                    result_select = gr.Dropdown(choices=[f for f in os.listdir(".") if f.endswith("_human_results.json")], label="Select Result to Download", value=None)
                    download_selected_btn = gr.Button("Download Selected")
            
            # Add results visualization placeholder
            gr.Markdown("### Results Visualization")
            gr.Markdown("*Visualization features will be added in a future update.*")
            
            # Connect events
            refresh_results_btn.click(get_result_stats, outputs=[result_stats])
            
            # Function to prepare all results for download as ZIP
            def prepare_all_results():
                import zipfile
                zip_path = "mteb_human_eval_results.zip"
                with zipfile.ZipFile(zip_path, 'w') as zipf:
                    for r in [f for f in os.listdir(".") if f.endswith("_human_results.json")]:
                        zipf.write(r)
                return zip_path
            
            # Function to return a single result file
            def get_selected_result(filename):
                if not filename:
                    return None
                if os.path.exists(filename):
                    return filename
                return None
            
            # Update dropdown when refreshing results
            def update_result_dropdown():
                return gr.Dropdown.update(choices=[f for f in os.listdir(".") if f.endswith("_human_results.json")])
            
            refresh_results_btn.click(update_result_dropdown, outputs=[result_select])
            download_all_btn.click(prepare_all_results, outputs=[gr.File(label="Download All Results")])
            download_selected_btn.click(get_selected_result, inputs=[result_select], outputs=[gr.File(label="Download Selected Result")])

if __name__ == "__main__":
    demo.launch()