Spaces:
Runtime error
Runtime error
File size: 15,730 Bytes
788f431 1e5ce4d 788f431 ca066a9 788f431 051fd3e 788f431 1fe00bb 1e5ce4d 788f431 1e5ce4d 788f431 1e5ce4d ca066a9 1e5ce4d 788f431 051fd3e ca066a9 788f431 051fd3e 788f431 1e5ce4d 788f431 1e5ce4d ca066a9 788f431 ca066a9 788f431 ca066a9 788f431 ca066a9 788f431 1e5ce4d 788f431 1e5ce4d 788f431 1e5ce4d ca066a9 788f431 ca066a9 788f431 1e5ce4d 788f431 1e5ce4d ca066a9 788f431 1e5ce4d 788f431 1e5ce4d 788f431 1e5ce4d 788f431 1e5ce4d 788f431 1e5ce4d 788f431 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
from typing import Tuple
import torch
import torch.nn as nn
class DualConversionNames:
"""
Mapping from legacy dual adapter layer names to updated
condition/modulation schema. Also supports delta/gate harmonization.
"""
LAYER_NAMES = {
# Projection remapping
"t5_proj": "condition_projection",
"clip_proj": "modulation_projection",
# Cross attention
"cross_t2c": "cross_c2m", # condition to modulation
"cross_c2t": "cross_m2c", # modulation to condition
# Output projections
"anchor_proj": "anchor_projection",
"delta_proj": "delta_projection",
"logsig_proj": "log_sigma_projection",
# Gate and guidance
"gate_proj": "gate_projection",
"guidance_proj": "guidance_projection",
# Fuse block
"fuse": "fusion_block",
# Pocket residual
"pocket_blocks": "residual_pocket_block"
}
# βββ Residual Pocket Block βββββββββββββββββββββββββββββββββββ
class BottleneckResBlock(nn.Module):
def __init__(self, dim, kernel=3, dropout=0.0):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.conv = nn.Conv1d(dim, dim, kernel_size=kernel, padding=kernel // 2, groups=1)
self.proj = nn.Sequential(
nn.Linear(dim, dim * 2),
nn.GELU(),
nn.Linear(dim * 2, dim),
nn.Dropout(dropout)
)
def forward(self, x):
residual = x
x = self.norm(x)
x = x.transpose(1, 2)
x = self.conv(x).transpose(1, 2)
return residual + self.proj(x)
class ConditionModulationShuntAdapter(nn.Module):
def __init__(self, config: dict):
super().__init__()
self.config = config
self.dtype = config.get("dtype", torch.float32)
self.condition_dim = config.get("condition_encoders", [])[0].get("hidden_size", 768)
self.modulation_dim = config.get("modulation_encoders", [])[0].get("hidden_size", 768)
self.bneck = config["bottleneck"]
self.heads = config["heads"]
self.tau_init = config["tau_init"]
self.max_guidance = config["max_guidance"]
use_norm = config.get("layer_norm", True)
use_do = config.get("use_dropout", True)
do_p = config.get("dropout", 0.0)
proj_depth = config.get("proj_layers", 2)
def build_projection(input_dim, output_dim):
layers = []
last_dim = input_dim
if use_norm:
layers.append(nn.LayerNorm(last_dim))
for i in range(proj_depth):
next_dim = self.bneck * (2 if i == 0 and proj_depth > 1 else 1)
layers.append(nn.Linear(last_dim, next_dim))
layers.append(nn.GELU())
if use_do:
layers.append(nn.Dropout(do_p))
last_dim = next_dim
layers.append(nn.Linear(last_dim, output_dim))
return nn.Sequential(*layers)
# Projection layers
self.condition_projection = build_projection(self.condition_dim, self.bneck)
self.modulation_projection = build_projection(self.modulation_dim, self.bneck)
# Cross attention blocks
self.cross_c2m = nn.MultiheadAttention(self.bneck, self.heads, batch_first=True, dropout=do_p)
self.cross_m2c = nn.MultiheadAttention(self.bneck, self.heads, batch_first=True, dropout=do_p)
self.tau = nn.Parameter(torch.full((self.heads, 1, 1), self.tau_init))
# Residual processing block
self.residual_pocket_block = nn.Sequential(
BottleneckResBlock(self.bneck, dropout=do_p),
BottleneckResBlock(self.bneck, dropout=do_p)
)
# Fusion pathway
self.fusion_block = nn.Sequential(
nn.LayerNorm(2 * self.bneck),
nn.Linear(2 * self.bneck, self.bneck * 2),
nn.GELU(),
nn.Linear(self.bneck * 2, self.bneck)
)
# Output projections
self.anchor_projection = build_projection(self.bneck, self.modulation_dim)
self.delta_projection = build_projection(self.bneck, self.modulation_dim)
self.log_sigma_projection = build_projection(self.bneck, self.modulation_dim)
# Gate and guidance
self.gate_projection = nn.Sequential(
nn.LayerNorm(self.bneck),
nn.Linear(self.bneck, self.bneck),
nn.GELU(),
nn.Linear(self.bneck, 1),
nn.Tanh(),
nn.Sigmoid()
)
self.guidance_projection = nn.Sequential(
nn.LayerNorm(self.bneck),
nn.Linear(self.bneck, 1),
nn.Sigmoid()
)
# βββ Legacy Aliases (Version 1 Compatibility) ββββββββββββββββββββββββββ
self.proj_t5 = self.condition_projection
self.proj_clip = self.modulation_projection
self.cross_t2c = self.cross_c2m
self.cross_c2t = self.cross_m2c
self.pocket_blocks = self.residual_pocket_block
self.fuse = self.fusion_block
self.anchor_proj = self.anchor_projection
self.delta_proj = self.delta_projection
self.logsig_proj = self.log_sigma_projection
self.gate_proj = self.gate_projection
self.guidance_proj = self.guidance_projection
def forward(self, cond_seq: torch.Tensor, mod_seq: torch.Tensor, config: dict = None):
if self.config.get("assert_input_dims", True):
assert cond_seq.size(-1) == self.condition_dim
assert mod_seq.size(-1) == self.modulation_dim
max_guidance = self.max_guidance if config is None else config.get("max_guidance", 0.0)
if max_guidance <= 0:
max_guidance = self.max_guidance
if max_guidance <= 0:
max_guidance = config.get("guidance_scale", 10.0)
cond_b = self.condition_projection(cond_seq)
mod_b = self.modulation_projection(mod_seq)
c2m, attn_c2m = self.cross_c2m(cond_b, mod_b, mod_b, need_weights=True, average_attn_weights=False)
m2c, attn_m2c = self.cross_m2c(mod_b, cond_b, cond_b, need_weights=True, average_attn_weights=False)
pocket = self.residual_pocket_block(c2m)
pocket_mean = pocket.mean(1, keepdim=True).expand(-1, mod_b.size(1), -1)
h = self.fusion_block(torch.cat([pocket_mean, m2c], dim=-1))
anchor = self.anchor_projection(h)
delta = self.delta_projection(h) * self.gate_projection(h)
log_sigma = self.log_sigma_projection(h)
g_tok = self.guidance_projection(h).squeeze(-1)
g_pred = g_tok.mean(1, keepdim=True) * max_guidance
return anchor, delta, log_sigma, attn_c2m, attn_m2c, self.tau, g_pred, self.gate_projection(h)
# βββ V1 Original Two Stream Shunt Adapter ββββββββββββββββββββββββββββββββββββββ
class TwoStreamShuntAdapter(nn.Module):
def __init__(self, config: dict):
super().__init__()
self.config = config
self.dtype = config.get("dtype", torch.float32)
self.t5_dim = config.get("condition_encoders", [])[0].get("hidden_size", 768)
self.clip_dim = config.get("modulation_encoders", [])[0].get("hidden_size", 768)
self.bneck = config["bottleneck"]
self.heads = config["heads"]
self.tau_init = config["tau_init"]
self.max_guidance = config["max_guidance"]
use_norm = config.get("layer_norm", True)
use_do = config.get("use_dropout", True)
do_p = config.get("dropout", 0.0)
proj_depth = config.get("proj_layers", 2)
def build_projection(input_dim, output_dim):
layers = []
last_dim = input_dim
if use_norm:
layers.append(nn.LayerNorm(last_dim))
for i in range(proj_depth):
next_dim = self.bneck * (2 if i == 0 and proj_depth > 1 else 1)
layers.append(nn.Linear(last_dim, next_dim))
layers.append(nn.GELU())
if use_do:
layers.append(nn.Dropout(do_p))
last_dim = next_dim
layers.append(nn.Linear(last_dim, output_dim))
return nn.Sequential(*layers)
# Projections
self.proj_t5 = build_projection(self.t5_dim, self.bneck)
self.proj_clip = build_projection(self.clip_dim, self.bneck)
# Attention
self.cross_t2c = nn.MultiheadAttention(self.bneck, self.heads, batch_first=True, dropout=do_p)
self.cross_c2t = nn.MultiheadAttention(self.bneck, self.heads, batch_first=True, dropout=do_p)
self.tau = nn.Parameter(torch.full((self.heads, 1, 1), self.tau_init))
# Residual Pocket
self.pocket_blocks = nn.Sequential(
BottleneckResBlock(self.bneck, dropout=do_p),
BottleneckResBlock(self.bneck, dropout=do_p)
)
# Fuse
self.fuse = nn.Sequential(
nn.LayerNorm(2 * self.bneck),
nn.Linear(2 * self.bneck, self.bneck * 2),
nn.GELU(),
nn.Linear(self.bneck * 2, self.bneck)
)
# Output Projections
self.anchor_proj = build_projection(self.bneck, self.clip_dim)
self.delta_proj = build_projection(self.bneck, self.clip_dim)
self.logsig_proj = build_projection(self.bneck, self.clip_dim)
self.gate_proj = nn.Sequential(
nn.LayerNorm(self.bneck),
nn.Linear(self.bneck, self.bneck),
nn.GELU(),
nn.Linear(self.bneck, 1),
nn.Tanh(),
nn.Sigmoid()
)
self.guidance_proj = nn.Sequential(
nn.LayerNorm(self.bneck),
nn.Linear(self.bneck, 1),
nn.Sigmoid()
)
def forward(self, t5_seq: torch.Tensor, clip_seq: torch.Tensor, config: dict = None):
if self.config.get("assert_input_dims", True):
assert t5_seq.size(-1) == self.t5_dim
assert clip_seq.size(-1) == self.clip_dim
max_guidance = self.max_guidance if config is None else config.get("max_guidance", 0.0)
if max_guidance <= 0:
max_guidance = self.max_guidance
if max_guidance <= 0:
max_guidance = 10
max_guidance = config.get("guidance_scale", 5.0)
t5_b = self.proj_t5(t5_seq)
clip_b = self.proj_clip(clip_seq)
t2c, attn_t2c = self.cross_t2c(t5_b, clip_b, clip_b, need_weights=True, average_attn_weights=False)
c2t, attn_c2t = self.cross_c2t(clip_b, t5_b, t5_b, need_weights=True, average_attn_weights=False)
pocket = self.pocket_blocks(t2c)
pocket_mean = pocket.mean(1, keepdim=True).expand(-1, clip_b.size(1), -1)
h = self.fuse(torch.cat([pocket_mean, c2t], dim=-1))
anchor = self.anchor_proj(h)
delta = self.delta_proj(h) * self.gate_proj(h)
log_sigma = self.logsig_proj(h)
g_tok = self.guidance_proj(h).squeeze(-1)
g_pred = g_tok.mean(1, keepdim=True) * max_guidance
return anchor, delta, log_sigma, attn_t2c, attn_c2t, self.tau, g_pred, self.gate_proj(h)
from safetensors.torch import save_file, load_file
def save_safetensors(adapter: nn.Module, path: str, metadata: dict = None):
"""
Save the current adapter state to safetensors format.
All tensors are moved to CPU and saved as float32 for compatibility.
Optional metadata may be embedded (e.g., version, prompt_mode).
"""
state = {k: v.float().cpu() for k, v in adapter.state_dict().items()}
save_file(state, path, metadata=metadata or {})
print(f"β
Model saved to {path}")
def load_safetensors(adapter: nn.Module, path: str, map_location="cpu"):
"""
Load a safetensors checkpoint into the adapter.
Uses strict key matching. Tensors are loaded to the specified device.
"""
state = load_file(path, device=map_location)
adapter.load_state_dict(state, strict=True)
print(f"β
Model loaded from {path}")
def load_converted_safetensors(adapter: nn.Module, path: str, map_location="cpu"):
"""
Load a legacy-format adapter into the updated dual-shunt schema.
Converts key names according to DualConversionNames mapping.
"""
state = load_file(path, device=map_location)
new_state = {}
rename_map = DualConversionNames.LAYER_NAMES
matched, renamed, skipped = 0, 0, 0
for key, tensor in state.items():
found = False
for old, new in rename_map.items():
if old in key:
new_key = key.replace(old, new)
new_state[new_key] = tensor
print(f"[MIGRATE] {key} β {new_key}")
renamed += 1
found = True
break
if not found:
if key in adapter.state_dict():
new_state[key] = tensor
matched += 1
else:
print(f"[SKIP] {key} not found in target adapter.")
skipped += 1
adapter.load_state_dict(new_state, strict=False)
print(f"\nβ
Converted model loaded from {path}")
print(f" π Renamed Keys: {renamed}")
print(f" β
Direct Matches: {matched}")
print(f" β οΈ Skipped Keys: {skipped}")
def reshape_for_shunt(
encoder_embeddings: torch.Tensor,
clip_slice: torch.Tensor,
adapter_model
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Ensures encoder_embeddings and clip_slice match the required dimensions
for adapter_model: [B, adapter_seq, adapter_dim].
Applies sequence interpolation and feature projection as needed.
"""
return encoder_embeddings, clip_slice
B, encoder_seq, encoder_dim = encoder_embeddings.shape
B2, clip_seq, clip_dim = clip_slice.shape
assert B == B2, "Batch sizes must match"
# -- Step 1: Interpolate SEQUENCE LENGTH (dim=1) if needed --
target_seq = max(adapter_model.condition_dim, adapter_model.modulation_dim)
if clip_seq != target_seq:
clip_slice = clip_slice.permute(0, 0, 2) # [B, C, T]
clip_slice = torch.nn.functional.interpolate(
clip_slice.float(),
size=target_seq,
mode="nearest"
)
clip_slice = clip_slice.permute(0, 0, 2) # [B, T, C]
if encoder_seq != target_seq:
encoder_embeddings = encoder_embeddings.permute(0, 0, 2)
encoder_embeddings = torch.nn.functional.interpolate(
encoder_embeddings.float(),
size=target_seq,
mode="nearest"
)
encoder_embeddings = encoder_embeddings.permute(0, 0, 2)
# -- Step 2: Project FEATURE DIMENSION (dim=2) if needed --
if clip_slice.size(-1) != adapter_model.condition_dim:
projection_clip = torch.nn.Linear(
clip_slice.size(-1),
adapter_model.condition_dim,
bias=True,
device=clip_slice.device
)
clip_slice = projection_clip(clip_slice)
del projection_clip
if encoder_embeddings.size(-1) != adapter_model.modulation_dim:
projection_encoder = torch.nn.Linear(
encoder_embeddings.size(-1),
adapter_model.modulation_dim,
bias=True,
device=encoder_embeddings.device
)
encoder_embeddings = projection_encoder(encoder_embeddings)
del projection_encoder
return encoder_embeddings, clip_slice
|