Spaces:
Runtime error
Runtime error
Update two_stream_shunt_adapter.py
Browse files- two_stream_shunt_adapter.py +376 -81
two_stream_shunt_adapter.py
CHANGED
@@ -1,115 +1,410 @@
|
|
1 |
-
|
2 |
-
|
|
|
3 |
import torch.nn as nn
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
def __init__(self, dim, kernel=3, dropout=0.0):
|
10 |
super().__init__()
|
11 |
-
self.
|
12 |
-
|
13 |
-
|
|
|
14 |
nn.GELU(),
|
15 |
-
nn.
|
16 |
-
nn.Dropout(dropout)
|
17 |
)
|
18 |
|
19 |
def forward(self, x):
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
22 |
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
29 |
super().__init__()
|
30 |
-
self.
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
return nn.Sequential(*layers)
|
51 |
|
52 |
-
#
|
53 |
-
self.
|
54 |
-
self.
|
55 |
|
56 |
-
#
|
57 |
-
self.
|
58 |
-
self.
|
59 |
-
self.tau
|
60 |
|
61 |
-
#
|
62 |
-
self.
|
|
|
|
|
|
|
63 |
|
64 |
-
#
|
65 |
self.fuse = nn.Sequential(
|
66 |
-
nn.LayerNorm(
|
67 |
-
nn.Linear(
|
68 |
nn.GELU(),
|
69 |
-
nn.Linear(bneck * 2, bneck)
|
70 |
)
|
71 |
|
72 |
-
#
|
73 |
-
self.
|
74 |
-
self.
|
75 |
-
self.
|
76 |
|
77 |
-
self.
|
78 |
-
nn.LayerNorm(bneck),
|
79 |
-
nn.Linear(bneck, bneck),
|
80 |
nn.GELU(),
|
81 |
-
nn.Linear(bneck,
|
|
|
|
|
82 |
)
|
83 |
|
84 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
-
# --- forward --------------------------------------------------------------
|
87 |
-
def forward(self, t5_seq: torch.Tensor, clip_seq: torch.Tensor):
|
88 |
-
assert t5_seq.size(-1) == self.cfg["t5"]["hidden_size"]
|
89 |
-
assert clip_seq.size(-1) == self.cfg["clip"]["hidden_size"]
|
90 |
|
91 |
-
|
92 |
-
clip_b = self.clip_in(clip_seq)
|
93 |
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
p = self.pocket(t2c)
|
98 |
-
z = torch.cat([p.mean(1, keepdim=True).expand_as(c2t), c2t], dim=-1)
|
99 |
-
h = self.fuse(z)
|
100 |
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
-
log_sigma = self.sigma_out(h)
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
|
112 |
-
attn_t2c, attn_c2t,
|
113 |
-
self.tau,
|
114 |
-
g_pred,
|
115 |
-
gate)
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
import torch.nn as nn
|
5 |
+
from .configs import ENCODER_CONFIGS, HARMONIC_SHUNT_REPOS
|
6 |
+
|
7 |
+
|
8 |
+
class DualConversionNames:
|
9 |
+
"""
|
10 |
+
Mapping from legacy dual adapter layer names to updated
|
11 |
+
condition/modulation schema. Also supports delta/gate harmonization.
|
12 |
+
"""
|
13 |
+
LAYER_NAMES = {
|
14 |
+
# Projection remapping
|
15 |
+
"t5_proj": "condition_projection",
|
16 |
+
"clip_proj": "modulation_projection",
|
17 |
+
|
18 |
+
# Cross attention
|
19 |
+
"cross_t2c": "cross_c2m", # condition to modulation
|
20 |
+
"cross_c2t": "cross_m2c", # modulation to condition
|
21 |
+
|
22 |
+
# Output projections
|
23 |
+
"anchor_proj": "anchor_projection",
|
24 |
+
"delta_proj": "delta_projection",
|
25 |
+
"logsig_proj": "log_sigma_projection",
|
26 |
|
27 |
+
# Gate and guidance
|
28 |
+
"gate_proj": "gate_projection",
|
29 |
+
"guidance_proj": "guidance_projection",
|
30 |
|
31 |
+
# Fuse block
|
32 |
+
"fuse": "fusion_block",
|
33 |
+
|
34 |
+
# Pocket residual
|
35 |
+
"pocket_blocks": "residual_pocket_block"
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
# βββ Residual Pocket Block βββββββββββββββββββββββββββββββββββ
|
40 |
+
class BottleneckResBlock(nn.Module):
|
41 |
def __init__(self, dim, kernel=3, dropout=0.0):
|
42 |
super().__init__()
|
43 |
+
self.norm = nn.LayerNorm(dim)
|
44 |
+
self.conv = nn.Conv1d(dim, dim, kernel_size=kernel, padding=kernel // 2, groups=1)
|
45 |
+
self.proj = nn.Sequential(
|
46 |
+
nn.Linear(dim, dim * 2),
|
47 |
nn.GELU(),
|
48 |
+
nn.Linear(dim * 2, dim),
|
49 |
+
nn.Dropout(dropout)
|
50 |
)
|
51 |
|
52 |
def forward(self, x):
|
53 |
+
residual = x
|
54 |
+
x = self.norm(x)
|
55 |
+
x = x.transpose(1, 2)
|
56 |
+
x = self.conv(x).transpose(1, 2)
|
57 |
+
return residual + self.proj(x)
|
58 |
|
59 |
|
60 |
+
class ConditionModulationShuntAdapter(nn.Module):
|
61 |
+
def __init__(self, config: dict):
|
62 |
+
super().__init__()
|
63 |
+
self.config = config
|
64 |
+
self.dtype = config.get("dtype", torch.float32)
|
65 |
+
self.condition_dim = config.get("condition_encoders", [])[0].get("hidden_size", 768)
|
66 |
+
self.modulation_dim = config.get("modulation_encoders", [])[0].get("hidden_size", 768)
|
67 |
+
self.bneck = config["bottleneck"]
|
68 |
+
self.heads = config["heads"]
|
69 |
+
self.tau_init = config["tau_init"]
|
70 |
+
self.max_guidance = config["max_guidance"]
|
71 |
+
|
72 |
+
use_norm = config.get("layer_norm", True)
|
73 |
+
use_do = config.get("use_dropout", True)
|
74 |
+
do_p = config.get("dropout", 0.0)
|
75 |
+
proj_depth = config.get("proj_layers", 2)
|
76 |
+
|
77 |
+
def build_projection(input_dim, output_dim):
|
78 |
+
layers = []
|
79 |
+
last_dim = input_dim
|
80 |
+
if use_norm:
|
81 |
+
layers.append(nn.LayerNorm(last_dim))
|
82 |
+
for i in range(proj_depth):
|
83 |
+
next_dim = self.bneck * (2 if i == 0 and proj_depth > 1 else 1)
|
84 |
+
layers.append(nn.Linear(last_dim, next_dim))
|
85 |
+
layers.append(nn.GELU())
|
86 |
+
if use_do:
|
87 |
+
layers.append(nn.Dropout(do_p))
|
88 |
+
last_dim = next_dim
|
89 |
+
layers.append(nn.Linear(last_dim, output_dim))
|
90 |
+
return nn.Sequential(*layers)
|
91 |
+
|
92 |
+
# Projection layers
|
93 |
+
self.condition_projection = build_projection(self.condition_dim, self.bneck)
|
94 |
+
self.modulation_projection = build_projection(self.modulation_dim, self.bneck)
|
95 |
+
|
96 |
+
# Cross attention blocks
|
97 |
+
self.cross_c2m = nn.MultiheadAttention(self.bneck, self.heads, batch_first=True, dropout=do_p)
|
98 |
+
self.cross_m2c = nn.MultiheadAttention(self.bneck, self.heads, batch_first=True, dropout=do_p)
|
99 |
+
self.tau = nn.Parameter(torch.full((self.heads, 1, 1), self.tau_init))
|
100 |
+
|
101 |
+
# Residual processing block
|
102 |
+
self.residual_pocket_block = nn.Sequential(
|
103 |
+
BottleneckResBlock(self.bneck, dropout=do_p),
|
104 |
+
BottleneckResBlock(self.bneck, dropout=do_p)
|
105 |
+
)
|
106 |
+
|
107 |
+
# Fusion pathway
|
108 |
+
self.fusion_block = nn.Sequential(
|
109 |
+
nn.LayerNorm(2 * self.bneck),
|
110 |
+
nn.Linear(2 * self.bneck, self.bneck * 2),
|
111 |
+
nn.GELU(),
|
112 |
+
nn.Linear(self.bneck * 2, self.bneck)
|
113 |
+
)
|
114 |
+
|
115 |
+
# Output projections
|
116 |
+
self.anchor_projection = build_projection(self.bneck, self.modulation_dim)
|
117 |
+
self.delta_projection = build_projection(self.bneck, self.modulation_dim)
|
118 |
+
self.log_sigma_projection = build_projection(self.bneck, self.modulation_dim)
|
119 |
+
|
120 |
+
# Gate and guidance
|
121 |
+
self.gate_projection = nn.Sequential(
|
122 |
+
nn.LayerNorm(self.bneck),
|
123 |
+
nn.Linear(self.bneck, self.bneck),
|
124 |
+
nn.GELU(),
|
125 |
+
nn.Linear(self.bneck, 1),
|
126 |
+
nn.Tanh(),
|
127 |
+
nn.Sigmoid()
|
128 |
+
)
|
129 |
+
self.guidance_projection = nn.Sequential(
|
130 |
+
nn.LayerNorm(self.bneck),
|
131 |
+
nn.Linear(self.bneck, 1),
|
132 |
+
nn.Sigmoid()
|
133 |
+
)
|
134 |
+
|
135 |
+
# βββ Legacy Aliases (Version 1 Compatibility) ββββββββββββββββββββββββββ
|
136 |
+
self.proj_t5 = self.condition_projection
|
137 |
+
self.proj_clip = self.modulation_projection
|
138 |
+
self.cross_t2c = self.cross_c2m
|
139 |
+
self.cross_c2t = self.cross_m2c
|
140 |
+
self.pocket_blocks = self.residual_pocket_block
|
141 |
+
self.fuse = self.fusion_block
|
142 |
+
self.anchor_proj = self.anchor_projection
|
143 |
+
self.delta_proj = self.delta_projection
|
144 |
+
self.logsig_proj = self.log_sigma_projection
|
145 |
+
self.gate_proj = self.gate_projection
|
146 |
+
self.guidance_proj = self.guidance_projection
|
147 |
+
|
148 |
+
def forward(self, cond_seq: torch.Tensor, mod_seq: torch.Tensor, config: dict = None):
|
149 |
+
if self.config.get("assert_input_dims", True):
|
150 |
+
assert cond_seq.size(-1) == self.condition_dim
|
151 |
+
assert mod_seq.size(-1) == self.modulation_dim
|
152 |
+
|
153 |
+
max_guidance = self.max_guidance if config is None else config.get("max_guidance", 0.0)
|
154 |
+
if max_guidance <= 0:
|
155 |
+
max_guidance = self.max_guidance
|
156 |
+
if max_guidance <= 0:
|
157 |
+
max_guidance = config.get("guidance_scale", 10.0)
|
158 |
+
|
159 |
+
cond_b = self.condition_projection(cond_seq)
|
160 |
+
mod_b = self.modulation_projection(mod_seq)
|
161 |
+
|
162 |
+
c2m, attn_c2m = self.cross_c2m(cond_b, mod_b, mod_b, need_weights=True, average_attn_weights=False)
|
163 |
+
m2c, attn_m2c = self.cross_m2c(mod_b, cond_b, cond_b, need_weights=True, average_attn_weights=False)
|
164 |
+
|
165 |
+
pocket = self.residual_pocket_block(c2m)
|
166 |
+
pocket_mean = pocket.mean(1, keepdim=True).expand(-1, mod_b.size(1), -1)
|
167 |
+
|
168 |
+
h = self.fusion_block(torch.cat([pocket_mean, m2c], dim=-1))
|
169 |
+
|
170 |
+
anchor = self.anchor_projection(h)
|
171 |
+
delta = self.delta_projection(h) * self.gate_projection(h)
|
172 |
+
log_sigma = self.log_sigma_projection(h)
|
173 |
+
|
174 |
+
g_tok = self.guidance_projection(h).squeeze(-1)
|
175 |
+
g_pred = g_tok.mean(1, keepdim=True) * max_guidance
|
176 |
+
|
177 |
+
return anchor, delta, log_sigma, attn_c2m, attn_m2c, self.tau, g_pred, self.gate_projection(h)
|
178 |
|
179 |
+
|
180 |
+
# βββ V1 Original Two Stream Shunt Adapter ββββββββββββββββββββββββββββββββββββββ
|
181 |
+
class TwoStreamShuntAdapter(nn.Module):
|
182 |
+
def __init__(self, config: dict):
|
183 |
super().__init__()
|
184 |
+
self.config = config
|
185 |
+
self.dtype = config.get("dtype", torch.float32)
|
186 |
+
self.t5_dim = config.get("condition_encoders", [])[0].get("hidden_size", 768)
|
187 |
+
self.clip_dim = config.get("modulation_encoders", [])[0].get("hidden_size", 768)
|
188 |
+
self.bneck = config["bottleneck"]
|
189 |
+
self.heads = config["heads"]
|
190 |
+
self.tau_init = config["tau_init"]
|
191 |
+
self.max_guidance = config["max_guidance"]
|
192 |
+
|
193 |
+
use_norm = config.get("layer_norm", True)
|
194 |
+
use_do = config.get("use_dropout", True)
|
195 |
+
do_p = config.get("dropout", 0.0)
|
196 |
+
proj_depth = config.get("proj_layers", 2)
|
197 |
+
|
198 |
+
def build_projection(input_dim, output_dim):
|
199 |
+
layers = []
|
200 |
+
last_dim = input_dim
|
201 |
+
if use_norm:
|
202 |
+
layers.append(nn.LayerNorm(last_dim))
|
203 |
+
for i in range(proj_depth):
|
204 |
+
next_dim = self.bneck * (2 if i == 0 and proj_depth > 1 else 1)
|
205 |
+
layers.append(nn.Linear(last_dim, next_dim))
|
206 |
+
layers.append(nn.GELU())
|
207 |
+
if use_do:
|
208 |
+
layers.append(nn.Dropout(do_p))
|
209 |
+
last_dim = next_dim
|
210 |
+
layers.append(nn.Linear(last_dim, output_dim))
|
211 |
return nn.Sequential(*layers)
|
212 |
|
213 |
+
# Projections
|
214 |
+
self.proj_t5 = build_projection(self.t5_dim, self.bneck)
|
215 |
+
self.proj_clip = build_projection(self.clip_dim, self.bneck)
|
216 |
|
217 |
+
# Attention
|
218 |
+
self.cross_t2c = nn.MultiheadAttention(self.bneck, self.heads, batch_first=True, dropout=do_p)
|
219 |
+
self.cross_c2t = nn.MultiheadAttention(self.bneck, self.heads, batch_first=True, dropout=do_p)
|
220 |
+
self.tau = nn.Parameter(torch.full((self.heads, 1, 1), self.tau_init))
|
221 |
|
222 |
+
# Residual Pocket
|
223 |
+
self.pocket_blocks = nn.Sequential(
|
224 |
+
BottleneckResBlock(self.bneck, dropout=do_p),
|
225 |
+
BottleneckResBlock(self.bneck, dropout=do_p)
|
226 |
+
)
|
227 |
|
228 |
+
# Fuse
|
229 |
self.fuse = nn.Sequential(
|
230 |
+
nn.LayerNorm(2 * self.bneck),
|
231 |
+
nn.Linear(2 * self.bneck, self.bneck * 2),
|
232 |
nn.GELU(),
|
233 |
+
nn.Linear(self.bneck * 2, self.bneck)
|
234 |
)
|
235 |
|
236 |
+
# Output Projections
|
237 |
+
self.anchor_proj = build_projection(self.bneck, self.clip_dim)
|
238 |
+
self.delta_proj = build_projection(self.bneck, self.clip_dim)
|
239 |
+
self.logsig_proj = build_projection(self.bneck, self.clip_dim)
|
240 |
|
241 |
+
self.gate_proj = nn.Sequential(
|
242 |
+
nn.LayerNorm(self.bneck),
|
243 |
+
nn.Linear(self.bneck, self.bneck),
|
244 |
nn.GELU(),
|
245 |
+
nn.Linear(self.bneck, 1),
|
246 |
+
nn.Tanh(),
|
247 |
+
nn.Sigmoid()
|
248 |
)
|
249 |
|
250 |
+
self.guidance_proj = nn.Sequential(
|
251 |
+
nn.LayerNorm(self.bneck),
|
252 |
+
nn.Linear(self.bneck, 1),
|
253 |
+
nn.Sigmoid()
|
254 |
+
)
|
255 |
+
|
256 |
+
def forward(self, t5_seq: torch.Tensor, clip_seq: torch.Tensor, config: dict = None):
|
257 |
+
if self.config.get("assert_input_dims", True):
|
258 |
+
assert t5_seq.size(-1) == self.t5_dim
|
259 |
+
assert clip_seq.size(-1) == self.clip_dim
|
260 |
+
|
261 |
+
max_guidance = self.max_guidance if config is None else config.get("max_guidance", 0.0)
|
262 |
+
if max_guidance <= 0:
|
263 |
+
max_guidance = self.max_guidance
|
264 |
+
if max_guidance <= 0:
|
265 |
+
max_guidance = 10
|
266 |
+
max_guidance = config.get("guidance_scale", 5.0)
|
267 |
+
|
268 |
+
t5_b = self.proj_t5(t5_seq)
|
269 |
+
clip_b = self.proj_clip(clip_seq)
|
270 |
+
|
271 |
+
t2c, attn_t2c = self.cross_t2c(t5_b, clip_b, clip_b, need_weights=True, average_attn_weights=False)
|
272 |
+
c2t, attn_c2t = self.cross_c2t(clip_b, t5_b, t5_b, need_weights=True, average_attn_weights=False)
|
273 |
+
|
274 |
+
pocket = self.pocket_blocks(t2c)
|
275 |
+
|
276 |
+
pocket_mean = pocket.mean(1, keepdim=True).expand(-1, clip_b.size(1), -1)
|
277 |
+
h = self.fuse(torch.cat([pocket_mean, c2t], dim=-1))
|
278 |
+
|
279 |
+
anchor = self.anchor_proj(h)
|
280 |
+
delta = self.delta_proj(h) * self.gate_proj(h)
|
281 |
+
log_sigma = self.logsig_proj(h)
|
282 |
+
|
283 |
+
g_tok = self.guidance_proj(h).squeeze(-1)
|
284 |
+
g_pred = g_tok.mean(1, keepdim=True) * max_guidance
|
285 |
+
|
286 |
+
return anchor, delta, log_sigma, attn_t2c, attn_c2t, self.tau, g_pred, self.gate_proj(h)
|
287 |
+
|
288 |
+
|
289 |
|
|
|
|
|
|
|
|
|
290 |
|
291 |
+
from safetensors.torch import save_file, load_file
|
|
|
292 |
|
293 |
+
def save_safetensors(adapter: nn.Module, path: str, metadata: dict = None):
|
294 |
+
"""
|
295 |
+
Save the current adapter state to safetensors format.
|
296 |
+
All tensors are moved to CPU and saved as float32 for compatibility.
|
297 |
+
Optional metadata may be embedded (e.g., version, prompt_mode).
|
298 |
+
"""
|
299 |
+
state = {k: v.float().cpu() for k, v in adapter.state_dict().items()}
|
300 |
+
save_file(state, path, metadata=metadata or {})
|
301 |
+
print(f"β
Model saved to {path}")
|
302 |
|
|
|
|
|
|
|
303 |
|
304 |
+
def load_safetensors(adapter: nn.Module, path: str, map_location="cpu"):
|
305 |
+
"""
|
306 |
+
Load a safetensors checkpoint into the adapter.
|
307 |
+
Uses strict key matching. Tensors are loaded to the specified device.
|
308 |
+
"""
|
309 |
+
state = load_file(path, device=map_location)
|
310 |
+
adapter.load_state_dict(state, strict=True)
|
311 |
+
print(f"β
Model loaded from {path}")
|
312 |
|
|
|
313 |
|
314 |
+
def load_converted_safetensors(adapter: nn.Module, path: str, map_location="cpu"):
|
315 |
+
"""
|
316 |
+
Load a legacy-format adapter into the updated dual-shunt schema.
|
317 |
+
Converts key names according to DualConversionNames mapping.
|
318 |
+
"""
|
319 |
+
state = load_file(path, device=map_location)
|
320 |
+
new_state = {}
|
321 |
+
|
322 |
+
rename_map = DualConversionNames.LAYER_NAMES
|
323 |
+
matched, renamed, skipped = 0, 0, 0
|
324 |
+
|
325 |
+
for key, tensor in state.items():
|
326 |
+
found = False
|
327 |
+
for old, new in rename_map.items():
|
328 |
+
if old in key:
|
329 |
+
new_key = key.replace(old, new)
|
330 |
+
new_state[new_key] = tensor
|
331 |
+
print(f"[MIGRATE] {key} β {new_key}")
|
332 |
+
renamed += 1
|
333 |
+
found = True
|
334 |
+
break
|
335 |
+
if not found:
|
336 |
+
if key in adapter.state_dict():
|
337 |
+
new_state[key] = tensor
|
338 |
+
matched += 1
|
339 |
+
else:
|
340 |
+
print(f"[SKIP] {key} not found in target adapter.")
|
341 |
+
skipped += 1
|
342 |
+
|
343 |
+
adapter.load_state_dict(new_state, strict=False)
|
344 |
+
|
345 |
+
print(f"\nβ
Converted model loaded from {path}")
|
346 |
+
print(f" π Renamed Keys: {renamed}")
|
347 |
+
print(f" β
Direct Matches: {matched}")
|
348 |
+
print(f" β οΈ Skipped Keys: {skipped}")
|
349 |
+
|
350 |
+
|
351 |
+
def reshape_for_shunt(
|
352 |
+
encoder_embeddings: torch.Tensor,
|
353 |
+
clip_slice: torch.Tensor,
|
354 |
+
adapter_model
|
355 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
356 |
+
"""
|
357 |
+
Ensures encoder_embeddings and clip_slice match the required dimensions
|
358 |
+
for adapter_model: [B, adapter_seq, adapter_dim].
|
359 |
+
|
360 |
+
Applies sequence interpolation and feature projection as needed.
|
361 |
+
"""
|
362 |
+
return encoder_embeddings, clip_slice
|
363 |
+
B, encoder_seq, encoder_dim = encoder_embeddings.shape
|
364 |
+
B2, clip_seq, clip_dim = clip_slice.shape
|
365 |
+
|
366 |
+
assert B == B2, "Batch sizes must match"
|
367 |
+
|
368 |
+
# -- Step 1: Interpolate SEQUENCE LENGTH (dim=1) if needed --
|
369 |
+
target_seq = max(adapter_model.condition_dim, adapter_model.modulation_dim)
|
370 |
+
|
371 |
+
if clip_seq != target_seq:
|
372 |
+
clip_slice = clip_slice.permute(0, 0, 2) # [B, C, T]
|
373 |
+
clip_slice = torch.nn.functional.interpolate(
|
374 |
+
clip_slice.float(),
|
375 |
+
size=target_seq,
|
376 |
+
mode="nearest"
|
377 |
+
)
|
378 |
+
clip_slice = clip_slice.permute(0, 0, 2) # [B, T, C]
|
379 |
+
|
380 |
+
if encoder_seq != target_seq:
|
381 |
+
encoder_embeddings = encoder_embeddings.permute(0, 0, 2)
|
382 |
+
encoder_embeddings = torch.nn.functional.interpolate(
|
383 |
+
encoder_embeddings.float(),
|
384 |
+
size=target_seq,
|
385 |
+
mode="nearest"
|
386 |
+
)
|
387 |
+
encoder_embeddings = encoder_embeddings.permute(0, 0, 2)
|
388 |
+
|
389 |
+
# -- Step 2: Project FEATURE DIMENSION (dim=2) if needed --
|
390 |
+
if clip_slice.size(-1) != adapter_model.condition_dim:
|
391 |
+
projection_clip = torch.nn.Linear(
|
392 |
+
clip_slice.size(-1),
|
393 |
+
adapter_model.condition_dim,
|
394 |
+
bias=True,
|
395 |
+
device=clip_slice.device
|
396 |
+
)
|
397 |
+
clip_slice = projection_clip(clip_slice)
|
398 |
+
del projection_clip
|
399 |
+
|
400 |
+
if encoder_embeddings.size(-1) != adapter_model.modulation_dim:
|
401 |
+
projection_encoder = torch.nn.Linear(
|
402 |
+
encoder_embeddings.size(-1),
|
403 |
+
adapter_model.modulation_dim,
|
404 |
+
bias=True,
|
405 |
+
device=encoder_embeddings.device
|
406 |
+
)
|
407 |
+
encoder_embeddings = projection_encoder(encoder_embeddings)
|
408 |
+
del projection_encoder
|
409 |
|
410 |
+
return encoder_embeddings, clip_slice
|
|
|
|
|
|
|
|